
Property-based Testing with FsCheck by Deriving
Properties from Business Rule Models

Bernhard K. Aichernig and Richard Schumi
Institute of Software Technology, Graz University of Technology, Austria

{aichernig,rschumi}@ist.tugraz.at

Abstract—Previous work has demonstrated that property-
based testing can successfully be applied to web services. For
example, it has been shown that JSON schemas can be used
to automatically derive test-case generators for web forms. This
paper presents a test-case generation approach for web services
that takes business rule models as input for property-based
testing. We parse these models to automatically derive generators
for sequences of web service requests together with their required
form data. Most of the work in this field applies property-based
testing in the context of functional programming. Here, we define
our properties in an object-oriented style in C# and its tool
FsCheck. We apply our method to the business rule models of
an industrial web service application in the automotive domain.

I. INTRODUCTION

Property-based testing (PBT) is a testing technique that
tries to falsify a given property by generating random input
data and verifying the expected behaviour [1]. Properties
can range from simple algebraic equations to complex state
machine models. Like in all model-based testing techniques
the properties serve as a source for test-case generation as well
as test oracles. It is a well-known testing practice in functional
programming, but nowadays we see a growth of applications
outside its traditional domain. Examples include the automated
testing of automotive software [2] and web-services [3]. In this
work we will focus on the latter.

Many web services store configuration settings in XML
files. Some web services also store work flow details and
user access rules in XML business rule models [4], [5]. These
XML definitions can be seen as an abstract specification of
the service behaviour, which can be used to verify whether the
service complies to this specified behaviour [6]. We present
an automated approach that uses these business rule models
to derive FsCheck1 models and generators that are applied
to generate command sequences with random input data.
FsCheck is a PBT tool for .Net, which supports the definition
of properties and generators in an object-oriented way with
C#. We use C#, because it is the application language of our
case study and because the system-under-test (SUT) has an
object-oriented architecture.

The process of our approach is illustrated in Figure 1. The
first step is to translate the XML files to input models for
FsCheck. FsCheck supports all kinds of models that have
states, transitions, postconditions and optionally preconditions,

1https://fscheck.github.io/FsCheck

but in our case the models were Extended Finite State Ma-
chines (EFSMs)[7]. These EFSMs are used by the specification
builder to create generators and FsCheck-interface implemen-
tations according to the parsed model. FsCheck transforms
these interface implementations into a property to be tested
via randomly generated command sequences. This property
requires that the state of the model is equal to the state of the
SUT after each transition (command).

For our use case a transition is not a simple action. It
represents the opening of a page of a graphical user interface,
the entering of data for form fields and saving the page. In
the test case generator the transitions are realised as command
classes with attributes representing the associated form data.

PBT was already applied to a number of web service
applications, because PBT is a good way to verify that a
variety of inputs are supported without problems. The most
similar approaches are described bellow:

López et al. presented a domain-specific language (DSL)
for automatic test data generation with QuickCheck, which is
easy to use for non-experts [8]. The DSL reuses syntax from
the web services description language (WSDL) in order to
generate well formed XML for the input of web services. It
supports constraints for different data types and combinators
that enable the application of constraints to all kinds of data.
The difference of this approach to our work is that it does not
consider state machines and that the generator definition must
be created manually.

Lampropoulos and Sagonas [3] present a similar approach
that automatically reads the WSDL specification of a web
service and makes web service calls with generated data.
The approach was implemented with the PBT tool PropEr
for Erlang. They support many data types, but only a few
constraints for the data. However, they show how additional
constraints can be added manually. In contrast to our work they
also do not use state machines to test the service behaviour.
They only test if the web service result is valid and if no error
occurred.

A similar approach was presented by Li et al. [9]. They
also show how WSDL can be used to automatically derive
generators, but the focus of their work is primarily on evolving
web services. Their approach makes it easy to adapt the
test environment to a new version of a web service. This is
achieved by automatically generating refactoring scripts for
the evolving test code. The difference to our work is that their
models have to be made manually by the user and that their

s1

s2 s3

EFSM

ParserXMLXML

Business Rule Model

Spec
Builder

FsCheck
Command

Spec

FsCheck

Command
Sequences

States &
Exceptions

SUT

Verdict &
Counter
Example

a

b

c

d

Fig. 1. Overview of the Steps for the FsCheck Command Sequence Generation for Business Rule Models

focus lies only on evolving web services.
Frelund et al. [10] present a library called Jsongen, which

can generate JSON data to test web services. Many web
services communicate via JSON because it is a convenient
language to encode data. It is similar to XML, but more
compact and more readable. Their library uses JSON schemas
with the structure of the data, data types and data constraints
to automatically create QuickCheck generators. They use these
QuickCheck generators to generate input data that fulfils the
requirements of a web service call. They apply their library
to test a small service, where users can post questions and
answers.

Benac Earle et al. [11] extend this library so that the JSON
schema also includes an abstract specification of the service
behaviour. This specification is in the form of a finite state
machine (FSM). In the previous work the FSM definition had
to be made separately to the JSON schema for the web service
data. In this work they show how it can be encoded in the
JSON schema. Their FSM is defined with hyper links, which
represent the events of the FSM and the states can be chosen
dynamically. In contrast to our work the JSON schema for the
service has to be made manually and it cannot be used from
the service components directly. Furthermore, their approach
was only evaluated with a small test web service, they have
not made a real case study.

The most similar work to ours was presented by Francisco
et al. [12]. They show a framework that automatically derives

QuickCheck models from a WSDL description and OCL se-
mantic constraints. They show how the models can be applied
to automatically test both stateless and stateful web services
with generated input data. The WSDL description contains
information about the required data, the data structure, data
types and the possible operations. The OCL constraints define
pre- and postconditions for the operations and can be used
to describe a state machine for the service behaviour. The
used service description is very similar to our business rule
models, but their generators consider only data types, while
we also support constraints for the data, like a minimum value
for an integer. Another difference is that the OCL semantic
constraints are added manually. Our business rule models were
already part of the web service architecture.

To the best of our knowledge, we could not find any other
work that uses inherent web service components respectively
business rule models to automatically derive PBT models.
Although there are some similar publications that show how
PBT models can be used for web services, they mostly rely
on a manual specification of a model separate to the web
service implementation. In contrast to this, our approach can
be directly applied to a service component, which is also used
directly on the server-side to verify if a command is permitted
in the current state and if the attributes are fitting to the model.
Furthermore, the other approaches were all implemented with
functional programming languages. Our approach uses C# to
define the properties in an object-oriented way.

Consequently, the contribution of our work can be sum-
marised as follows. The main contribution is a new approach
that uses XML business rule models in the form of EFSMs
as input for PBT. Another contribution is the application
and evaluation of our approach in an industrial case study.
Furthermore, our work seems to be one of the first publications
about FsCheck and its C# version.

The rest of the paper is structured as follows. First, Sec-
tion II will explain the basics of PBT, FsCheck and business
rule models. Next, in Section III we show a small example
of model-based testing with FsCheck. Then, in Section IV we
describe details about the structure and implementation of our
approach. Section V shows an industrial case study where our
approach was applied to a real world application. Finally, the
work is concluded in Section VI.

II. BACKGROUND

A. Property-based Testing

Property-based testing (PBT) is an online testing technique.
In contrast to off-line testing, tests are not first stored and
then executed, but directly executed while they are generated.
Properties are expressed as functions, which contain code that
should be tested. When the function runs through without
exception, then the property passed, otherwise a counter ex-
ample is returned. The simplest properties are functions with
a Boolean return value that should be true, when the function
runs as expected. The functions should work for any input
values, hence a high number of random inputs are generated
for the parameters. Another important aspect of PBT is shrink-
ing, which is used to find a similar simpler counterexample,
when a property fails. In order to shrink a counterexample, a
PBT tool searches smaller failing counterexamples. The search
method can be specified individually for different data types
[13], [14], [15].

A simple example of an algebraic property is that the reverse
of the reverse of a list must equal the original list:

∀xs ∈ Lists[T] : reverse(reverse(xs)) = xs

A PBT tool will generate a series of random lists xs, execute
the reverse function and evaluate the property.

PBT can also be applied for models in the form of extended
finite state machines (EFSMs) [16]. An EFSM can formally
be described as a 6-tuple (S, s0, V, I, O, T)
S is a finite set of states,
s0 ∈ S is an initial state,
V is a finite set of variables,
I is a finite set of inputs,
O is a finite set of outputs,
T is a finite set of transitions, t ∈ T can be described as a
5-tuple (ss, i, g, op, st),
ss is the source state,
i is an input,
g is a guard,
op is a sequence of output and assignment operations,
st is the target state [16].

In order to use such an EFSM for PBT the permitted
transition sequences have to be defined with preconditions
and also the effect of each transition has to be defined
with the postconditions. Preconditions, postconditions and the
execution semantics of transition are encapsulated in so-called
commands Cmds. The property of an EFSM is that for
each permitted path on the model, the postcondition of each
transition respectively command of the path must hold. In
order to verify this property a PBT tool produces random
transition sequences and checks the postconditions after each
transition. Formally a property for an EFSM can be defined
as follows.

∀s ∈ S, i ∈ I, cmd ∈ Cmds :

cmd.pre(i, s) =⇒ cmd.post(cmd.runActual(i, s),

cmd.runModel(i, s))

cmd.runActual : S × I → S ×O

cmd.runModel : S × I → S ×O

The Boolean function cmd.pre is the precondition. It defines
the valid inputs and states of a command. The post condition
cmd.post relates the new states and the outputs of the SUT
and the model after the execution of the command on both the
SUT cmd.runActual and the model cmd.runModel.

PBT constitutes a flexible and scalable model-based test-
ing technique because it is random testing and it has been
shown that it generates a large number of tests in reasonable
time [17].

The first PBT tool was QuickCheck [1] for Haskell. There
are many other tools that are based on QuickCheck, for
example, ScalaCheck2 or Hypothesis3 for Python. For our
approach we work with FsCheck.

B. FsCheck

FsCheck is a PBT tool for .NET based on QuickCheck
and influenced by ScalaCheck. Like ScalaCheck it extends
the basic QuickCheck functionality with support for state-
based models. A small limitation of the current version is that
it does not consider preconditions when shrinking command
sequences. However, this feature is included in an experimen-
tal release. With FsCheck, properties can be defined both in
a functional programming style with F# and object-oriented
with C#. Similar to QuickCheck it has default generators for
basic data types and more complex ones can be defined via
composition. It has an Arbitrary instance that groups together
a shrinker and a generator for a custom data type. This
makes it possible to use variables of this data type as input
for properties. New Arbitrary instances can be dynamically
registered at run time and then the new data type can be
directly used for the input data generation.

2https://www.scalacheck.org
3https://pypi.python.org/pypi/hypothesis

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f−8” ?>
2 <RuleEngineModel TfmsType=” I n c i d e n t ”>
3 <A l l A t t r i b u t e s>
4 <S t a t i c A t t r i b u t e I n f o Name=” P a r e n t F o l d e r ”
5 DataType=” R e f e r e n c e ”>
6 <Query C r i t e r i a =” C l a s s = I n c i d e n t F o l d e r ”>
7 <R e q u e s t e d A t t r i b u t e s>
8 <s t r i n g>∗</ s t r i n g>
9 </ R e q u e s t e d A t t r i b u t e s>

10 </ Query>
11 </ S t a t i c A t t r i b u t e I n f o>
12 <S t a t i c A t t r i b u t e I n f o Name=” D e s c r i p t i o n ”
13 DataType=” S t r i n g ” MaxValue=” 128 ” />
14 . . .
15 </ A l l A t t r i b u t e s>
16 <AllTasks>
17 <Task Name=” I n c i d e n t C r e a t e T a s k ”>
18 <D y n a m i c A t t r i b u t e s I n f o>
19 <A t t r i b u t e Name=” P a r e n t F o l d e r ” Enab led =” t r u e ”
20 R e q u i r e d =” t r u e ” />
21 <A t t r i b u t e Name=” D e s c r i p t i o n ” Enabled =” t r u e ”
22 R e q u i r e d =” t r u e ” />
23 . . .
24 </ D y n a m i c A t t r i b u t e s I n f o>
25 <R e q u i r e d U s e r R o l e s>
26 <Role>I n c i d e n t S u b m i t t e r</ Role>
27 . . .
28 </ R e q u i r e d U s e r R o l e s>
29 <P o s s i b l e N e x t S t a t e s>
30 <S t a t e Name=” S u b m i t t e d ” NoteRequ i r ed =” f a l s e ” />
31 </ P o s s i b l e N e x t S t a t e s>
32 </ Task>
33 . . .
34 </ AllTasks>
35 <A l l S t a t e s>
36 <S t a t e Name=” S u b m i t t e d ”>
37 <P o s s i b l e T a s k s>
38 <Task>I n c i d e n t E d i t T a s k</ Task>
39 <Task>I n c i d e n t C l o s e T a s k</ Task>
40 </ P o s s i b l e T a s k s>
41 </ S t a t e>
42 . . .
43 </ A l l S t a t e s>
44 </ RuleEngineModel>

Listing 1. Simplified XML Representation of a Business Rule Model

Furthermore, FsCheck has extensions for the unit testing
tools NUnit4 and Xunit5. These extensions allow the definition
of properties in a simple and convenient way like normal unit
tests.

C. Business Rule Models

An application may need various modifications depending
on the customer or on the country of deployment. It is infeasi-
ble to apply these modifications to the source code, because it
would require the development of different versions for each
customer. A business rule engine is a good way to apply
the different modifications in the form of rules for different
deployments of an application. Business rule engines are used
to integrate these rules in the business logic. They are often
combined with business rule management systems that can be
used to store, load and easily modify the rules. There are many
frameworks, architectures or systems for web services and
applications in general that provide business rule management
functionality [18], [19], [20]. Most of them only differ by the
information that can be encoded in the rules. For example,
business rule engines can store constraints, conditions, actions
and other business process semantics. Even work flow details

4http://www.nunit.org
5https://xunit.github.io

can be included, although there is a separate technology for
this, called work flow engine [21], [22]. The web service
application of our case study has a custom development of
a rule management system. This custom implementation was
made, because there were not many existing approaches at
the time, when the application was developed. Our business
rule models are similar to many other rule definitions, like for
example the business process execution language (BPEL) [23].

Our rule engine models can be seen as EFSMs. Listing 1
shows a simplified version of the XML file of one rule engine
model that was used as basis for the example in Section III. It
can be seen that these models are structured as follows. The
main components are:
• attribute definitions with data types and constraints, which

represent the variables of the EFSM (Lines 3 to 15)
• tasks, which represent transitions with enabled and re-

quired attributes and required user roles and possible next
states (Lines 17 to 34)

• states with possible tasks (Lines 35 to 43)
Optionally the models can also include:
• scripts, which can be executed on certain events
• queries for the selections of specific objects
• reports for a good overview of the entered objects
Each of the business rule models describes one object of our

application. The objects are stored in a data base and a list
of them can be selected by a query, which make a search for
objects with specific attributes. The application has a number
of modules, which include multiple objects that are used in
composition. A task represents (1) opening a page with many
form fields respectively attributes, (2) entering form data in
these fields and (3) submitting the form.

Ideally, all customer dependent business logic should be
encoded in the business rule models. Testing these models
would only test the interpreter. In practice the programmers
often manipulate the source code to integrate new features and
during the evolution the source code deviates from the model.
Hence, it makes sense to verify if the SUT still conforms to
the model. We perform this verification in the postconditions
of commands, which serve as test oracle, and check if the
state of the model matches the state of the SUT. Furthermore,
these automatic tests are a good basis for further load and
stress testing.

III. EXAMPLE OF MODEL-BASED TESTING WITH
FSCHECK

In this section we want to show how FsCheck can be
applied for model-based testing. A simple example taken from
our industrial case study shall serve to demonstrate how the
necessary interface implementations have to be realised.

A. FsCheck Modelling

In order to use FsCheck for model-based testing, we need
a specification class that implements an ICommandGenerator
interface and contains the following elements:
• SUT definition (which is called Actual by FsCheck)

1 p u b l i c c l a s s Spec : ICommandGenerator<SUT , Model>
2 {
3 p u b l i c SUT I n i t i a l A c t u a l { g e t{re turn new SUT () ;}}
4 p u b l i c Model I n i t i a l M o d e l { g e t{re turn new Model () ;}}
5
6 p u b l i c Gen<Command<SUT , Model>> Next (Model m){
7 re turn Gen . E lemen t s (new Command<SUT , Model>[] {
8 new I n c i d e n t C r e a t e T a s k () ,
9 new I n c i d e n t E d i t T a s k () ,

10 new I n c i d e n t C l o s e T a s k () }) ;
11 }
12
13 p r i v a t e c l a s s I n c i d e n t C l o s e T a s k : BaseCommand{
14 p u b l i c o v e r r i d e bool Pre (Model m){
15 re turn m. S t a t e == ” S u b m i t t e d ” ;
16 }
17 p u b l i c o v e r r i d e P r o p e r t y P o s t (SUT s , Model m){
18 re turn (s . S t a t e == m. S t a t e) . T o P r o p e r t y () ;
19 }
20 p u b l i c o v e r r i d e SUT RunActual (SUT s){
21 s . I n c i d e n t C l o s e T a s k () ; re turn s ;
22 }
23 p u b l i c o v e r r i d e Model RunModel (Model m){
24 m. I n c i d e n t C l o s e T a s k () ; re turn m;
25 }
26 p u b l i c o v e r r i d e s t r i n g T o S t r i n g (){
27 re turn ” I n c i d e n t C l o s e T a s k ” ;
28 }
29 }
30 . . .
31 }

Listing 2. FsCheck Specification for the Incident Example

• Model definition
• Initial state of the SUT and the model
• Generator for the next Command given the current state

of the model
• Commands combining preconditions, postconditions and

the transition execution semantics of the SUT and the
model

Listing 2 shows an example of a specification for FsCheck.
The specification in this example implements an ICommand-
Generator interface, which takes the model and the SUT as
generic type parameter. The class of the SUT basically is a
wrapper, that provides methods for the execution of all tasks
and a method to retrieve the current state of one incident object
of the SUT. An incident object is an element of the application
domain. For example, it could be a bug report. It has a number
of attributes (form data), which are stored in the data base. In
this example we assume that the attributes are set statically in
the wrapper class of the SUT. In Section IV we will see, how
form data can be generated automatically for these attributes.

The state machine in Figure 2 represents the states and
tasks of one incident object. To simplify the discussion, we
assume that the state machine only represents a currently
opened incident object. Generally, in an object-oriented system
comprising several objects, we would need functionality to
switch between objects. Hence, in a more realistic model, an
additional select transition should be added, which can open
other (incident) objects in all states.

In this example an IncidentCreateTask is possible globally
in all states. It creates and opens a new incident object, which
can be edited and closed with the corresponding tasks.

The initial states of the model and SUT are set via calling
their constructor methods (Lines 3 and 4). The generator
for the next state selects one element of a command array

randomly, which can be accomplished with a default elements
generator from FsCheck (Lines 6 to 11).

For this standard approach all command classes need to
be defined manually (Lines 13 to 29). The classes need to
define how the transitions should be executed on the model and
SUT and what postcondition should hold after the execution.
Moreover, a ToString() method can be used to display various
information of the command and optionally a precondition
can be defined, which has to hold so that the transition
is allowed. The classes for the IncidentCreateTask and the
IncidentEditTask are similar to the IncidentCloseTask and
therefore omitted in Listing 2.

For a large model with many transitions it is not practical
that all commands have a separate class. Therefore, it makes
sense to make this definition in a more generic way for all
possible transitions and to automate the process as far as
possible.

B. FsCheck Command Generation and Execution

FsCheck takes a specification as shown in Listing 2 and
generates commands that consider the preconditions and start
at the initial state. A single test case is a sequence of
commands, but the command generator can also create trivial
sequences with zero or one command. After a command is
generated it is directly executed on the SUT. Hence, FsCheck
performs online testing.

In order to start testing, we have to make a property from the
specification. This can be done with the ToProperty() method,
which is provided by FsCheck. The property can then for
example be tested by calling the QuickCheck() method or also
with the help of unit testing frameworks.

new Spec () . T o P r o p e r t y () . QuickCheck () ;

Per default 100 test cases will be generated and executed,
but this number can be configured. Listing 3 shows two exam-
ple sequences that were produced by FsCheck for the incident
specification. It can be seen that the sequences have quite
different lengths, because FsCheck generates them randomly
with a variety of lengths. Moreover, FsCheck classifies the
sequences according to their lengths, which can be seen in the
last line of the listing. These classifications can be helpful to
find out that a certain generator only considers trivial cases.

Submitted

IncidentCreateTask

IncidentEditTask

Closed

IncidentCloseTask

Fig. 2. Incident Example State Machine

0 :
[I n c i d e n t C r e a t e T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C r e a t e T a s k ; I n c i d e n t E d i t T a s k]

1 :
[I n c i d e n t C r e a t e T a s k ; I n c i d e n t E d i t T a s k ; I n c i d e n t E d i t T a s k ;
I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ; I n c i d e n t E d i t T a s k ;
I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C r e a t e T a s k ; I n c i d e n t C l o s e T a s k ;
I n c i d e n t C r e a t e T a s k ; I n c i d e n t E d i t T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t C r e a t e T a s k ; I n c i d e n t E d i t T a s k ; I n c i d e n t C l o s e T a s k ;
I n c i d e n t C r e a t e T a s k ; I n c i d e n t E d i t T a s k ; I n c i d e n t E d i t T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C r e a t e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t E d i t T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t E d i t T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t C r e a t e T a s k ; I n c i d e n t C l o s e T a s k ; I n c i d e n t C r e a t e T a s k ;
I n c i d e n t C r e a t e T a s k]
Ok , p a s s e d 2 t e s t s , 50% s h o r t s e q u e n c e s (1−6 commands)

Listing 3. Generated Command Sequences for the Incident Example

IV. ARCHITECTURE AND IMPLEMENTATION

In this section we show how our approach makes it possible
to use rule engine models to automatically derive FsCheck
specifications, which are used to generate test cases.

As already explained in Section I we parse the business
rule models from XML files and create an EFSM. This task
is done by a parser that we have implemented for our custom
business rule models. The result is a parsed model represented
as an object structure, i.e. an abstract syntax tree. The class
diagram for this object structure is presented in Figure 3. It
can be seen that the model consists of an attribute dictionary,
an initial state, a current state, a list of states and a dictionary
of transitions. The transitions are represented by a separate
class, that contains hash sets for the possible source and
target states, a name and a flag, which indicates that the
state should not change after this transition. Furthermore, the
class includes a dictionary for the required attributes. The
attributes represent the form data of a web-service operation.
All attributes have a common base class, which has fields
like name and data type. The derived classes for specific data
types extend this base class by adding possible constraints
and a custom generator for the data type that respects these
constraints. For example, an integer attribute class can have
constraints for the minimum and maximum value and the
generator chooses a number between these boundaries or an
arbitrary number if no constraints are given.

We have implemented attribute classes for simple data types,
like enumerations, doubles, dates and times, but we also
support more complex data types.

• Reference attributes: a reference to another object of the
SUT can also be an attribute for a task. The possible
options for this object are given by a query, which
represents a search string for the data base. The interface
for the SUT provides a method to get results for a
valid query and an element generator chooses one of the
results randomly. This generator, was already explained
in Section III.

• Object attributes: an object attribute can group together
multiple attributes in a struct or in a list. The generator
for this type recursively calls the generators of included
types, which can be object attributes again.

• Attachment attributes: some tasks require files of certain
file types. The generator for this attribute chooses one of
the possible file types and generates a random name with
this type. The generation of the actual file is added to a
wrapper class of the SUT, because the file should also be
deleted after the test execution.

The object representation of the model is also used for the
interface specifications for FsCheck. For example, precondi-
tions for the restriction of the transitions are automatically cre-
ated by the model class. The generator for the next command
also includes information of the model to generate commands
with possible next states and attribute data. Listing 4 shows
how attribute data can be generated. First a list of generators
is created by iterating over the required attributes and adding
the generators to the list (Lines 2 to 5). This list is then given
to a sequence generator as input, which creates an array of
values for all the generators in the list. In order to store them
in a dictionary, we use the select function of the generator
(Line 6). This function takes an anonymous function, which
takes the values as input and returns an object that should be
created by the generator. In our case the returned object is a
dictionary with attribute names as keys and the data as values
(Lines 7 to 13).

This attribute data generation is required for the command
generation, which is shown in Listing 5. It can be seen that
an array of possible transitions is created in the model class,
which considers the preconditions for this creation (Line 2).
An element generator is used to choose one of these transitions
and with the selectMany function we process the chosen
transition (Line 3).

The selectMany function is similar to the select function.
It can be applied to a generator and requires an anonymous
function as argument. This anonymous function takes a value
of the generator as input and has to return a new generator.
Therefore, selectMany makes it possible to nest generators and
also to pass the generated value to the inside generator.

If the chosen transition can lead to multiple next states, then
we also choose a next state with an element generator (Line 5).
Otherwise, it is possible that the transition should keep the cur-
rent state (Lines 10 to 12). In both cases we apply the attribute
data generator, which was shown in Listing 4 (Lines 6 and
13). With the generated data we create a DynamicCommand
object, which takes the transition, the model, the attribute data
and the next state as arguments for the constructor. In order
to fulfil the interface requirements for FsCheck, we have to
cast this object to its base class before we can return it for the
generator (Lines 7 and 14).

The DynamicCommand class is shown in Listing 6. This
class can handle the execution of all transitions of the parsed
model, because the definition is made in a generic way,
which works for all transitions. It can be seen that the class
has the transition, the model, attribute data and the next

Fig. 3. Class Diagram for a Parsed Model

1 Gen<D i c t i o n a r y <s t r i n g , objec t>> g e n e r a t e D a t a (A t t r i b u t e [] a t t r i b u t e s) {
2 L i s t<Gen<objec t>> g e n L i s t = new L i s t<Gen<objec t >>();
3 foreach (A t t r i b u t e a in a t t r i b u t e s){
4 g e n L i s t . Add (a . G e n e r a t o r ()) ;
5 }
6 re turn Gen . Sequence (g e n L i s t . ToArray ()) . S e l e c t (v a l u e s => {
7 var a t t r i b u t e D a t a = new D i c t i o n a r y <s t r i n g , objec t > () ;
8 i n t i = 0 ;
9 foreach (o b j e c t v a l u e in v a l u e s){

10 s t r i n g name = a t t r i b u t e s [i + +] . Name ;
11 a t t r i b u t e D a t a . Add (name , v a l u e) ;
12 }
13 re turn a t t r i b u t e D a t a ;
14 }) ;
15 }

Listing 4. Attribute Data Generator for Automatically Filling Web Service Forms with Data

1 p u b l i c Gen<Command<SUT , ParsedModel>> Next (ParsedModel m){
2 T r a n s i t i o n [] o p t i o n s = m. g e t P o s s i b l e T r a n s i t i o n s () ;
3 re turn Gen . E lemen t s (o p t i o n s) . Se lec tMany (t => {
4 i f (t . h a s M u l t i p l e N e x t S t a t e s ()) {
5 re turn Gen . E lemen t s (t . To . ToArray ()) . Se lec tMany (n e x t S t a t e =>
6 g e n e r a t e D a t a (t . R e q u i r e d A t t r i b u t e s . Va lues . ToArray ()) . S e l e c t (d a t a =>
7 (Command<SUT , ParsedModel >) new DynamicCommand (t , m, da t a , n e x t S t a t e))) ;
8 } e l s e {
9 s t r i n g n e x t S t a t e = n u l l ;

10 i f (t . S t a y I n S t a t e){
11 n e x t S t a t e = m. S t a t e ;
12 }
13 re turn g e n e r a t e D a t a (t . R e q u i r e d A t t r i b u t e s . Va lues . ToArray ()) . S e l e c t (d a t a =>
14 (Command<SUT , ParsedModel >) new DynamicCommand (t , m, da t a , n e x t S t a t e))) ;
15 }
16 }) ;
17 }

Listing 5. Next State Generator for Automatically Generating Web-Service Requests

1 p u b l i c c l a s s DynamicCommand : Command<SUT , ParsedModel>
2 {
3 T r a n s i t i o n t ;
4 ParsedModel m;
5 D i c t i o n a r y<s t r i n g , objec t> a t t r i b u t e D a t a ;
6 s t r i n g n e x t S t a t e = n u l l ;
7
8 p u b l i c DynamicCommand (T r a n s i t i o n t , ParsedModel m,
9 D i c t i o n a r y<s t r i n g , objec t> da ta , s t r i n g n e x t S t a t e){

10 t h i s . t = t ;
11 t h i s .m = m;
12 t h i s . n e x t S t a t e = n e x t S t a t e ;
13 t h i s . a t t r i b u t e D a t a = d a t a ;
14 }
15 p u b l i c o v e r r i d e ParsedModel RunModel (ParsedModel m)
16 {
17 m. m a k e T r a n s i t i o n (t . Name , n e x t S t a t e) ;
18 re turn m;
19 }
20 p u b l i c o v e r r i d e SUT RunActual (SUT s){
21 s u t . D e f a u l t T a s k (m, t , a t t r i b u t e D a t a , n e x t S t a t e) ;
22 re turn s ;
23 }
24 p u b l i c o v e r r i d e P r o p e r t y P o s t (SUT s , ParsedModel m){
25 re turn (s . S t a t e == m. S t a t e) . T o P r o p e r t y () ;
26 }
27 p u b l i c o v e r r i d e s t r i n g T o S t r i n g (){
28 re turn t . Name ;
29 }
30 }

Listing 6. Generic Command Definition

state as member variables and constructor arguments. They
are required for the execution of the transition. Running a
transition on the model is done with a function of the model
class (Line 17). The execution on the SUT, which is done in
RunActual, calls the wrapper class of the SUT (Line 21). This
wrapper class uses reflections to call the actual methods on the
SUT and it also sets the attribute data. In the postcondition
we check if the state of the model is equal to the state of the
SUT.

A nice feature, which is also supported by FsCheck is
command generation with different frequencies. This feature
makes it possible to test certain problematic tasks more
frequently and also to simulate user behaviour. Normally
commands are generated randomly with a uniform distribution,
but we added the possibility to generate commands according
to certain probability distributions, which can be specified
by the probability mass function respectively weights for the
transitions. Listing 7 shows how this can be done. We just
create a WeightAndValue object for each transition, which
takes a weight and a generator as parameter. In this case the
weight is a member variable of the transition and we use a
constant generator, which simply generates a transition object.
With the FsCheck generator Gen.Frequency one transitions
is selected according to the weights. The remaining part of
the command generation is the same as in Listing 5 and was
therefore omitted.

1 var wv = new L i s t<WeightAndValue<Gen<T r a n s i t i o n >>>();
2 foreach (T r a n s i t i o n t in m. g e t P o s s i b l e T r a n s i t i o n s ()){
3 wv . Add (new WeightAndValue<Gen<T r a n s i t i o n>>
4 (t . Weight , Gen . C o n s t a n t (t))) ;
5 }
6 re turn Gen . Frequency (wv) . Se lec tMany (t => . . .

Listing 7. Command Generation with Frequencies

V. INDUSTRIAL CASE STUDY

Our approach was developed for a web service application
which was provided by our industrial partner AVL6. This
application has a client-server architecture. It originates from
the automotive domain and is called Testfactory Management
Suite (TFMS)7.

This system makes it possible to manage test field data,
activities, resources, information and work flows. The test
fields can, for example, test power trains and engines of cars.
A variety of activities can be realised with the system, like test
definition, planning, preparation, execution, data management
and analysis. The system is a composition of many modules.
Each of them provides different functionalities, like the man-
agement of test equipment and test standards.

Our case study was primarily applied to one module of
the TFMS, which is called the Test Order Manager. This
module controls individual work steps and preparations for
test orders. A test order is a composition of multiple steps
that are necessary for an automotive test sequence at a test
field. We also tested other small modules like the Incident
Manager, which was shown in the example of Section III, but
the major part was the Test Order Manager. A state machine
of a test order is shown in Figure 4. The figure displays only
states and transitions, because there are too many attributes to
show them. It can be seen that the model contains a number of
states for the work-flow respectively life cycle of a test order.
The number of possible transitions between these states is
high. Therefore, our automated approach makes sense, because
otherwise the test of all these transitions would be impractical,
especially, since the transitions are not simple actions in this
case study. Each transition represents the opening of a page,
entering data for form fields and saving the page. One example
page of an AdminEdit task can be seen in Figure 5. This page
is part of the graphical user interface of a client application
that connects to web services on a server. It contains a
number of form fields and tables that require generated data.
For the case study AVL provided us a test framework that
performs the communication with the web services on the
server. This framework offers functions for executing tasks
and for retrieving data, like the state of a domain object. This
state is compared in the postcondition to the state of the model.

The case study revealed the following problems and bugs:
• There was a bug in the original testing framework that

was provided by our industrial partner. The expected state
after a task execution was sometimes wrong, because in
some cases an old version of the object was used by the
testing framework.

• Another issue we detected concerns our test-case gen-
eration method. In some rare cases the business models
do not contain enough information. For example, there
were reference attributes that could not be changed to a
different subtype after an object was created. The query
for these attributes needed an additional restriction for

6https://www.avl.com
7https://www.avl.com/-/avl-testfactory-management-suite-tfms

Created

ToCreate

Duplicate
AdminEdit

EditCreated

InWork

MakeReady AdminEdit

Executed

AdminEdit

Finished
AdminEdit

Cancelled

AdminEdit

CancelInCreated

DeletedAdminEdit

Invalid

Invalidate Duplicate Reject AdminEdit

AdminEditEditStandardWorkInWork

AdminEdit

AdminEdit

AdminEditCancelInStandardWorkInWork

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEditEditStandardWorkExecuted

Finish AdminEdit

AdminEdit CancelInStandardWorkExecuted

AdminEdit

DuplicateAdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit CancelInFinished

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

Activate

CancelInInvalid

Fig. 4. Test Order Manager Model

the subtype. This information was correctly implemented
in the code, but is missing in the rule engine. Hence, the
tool reported a bug that in fact was not. It is rather a
limitation of the approach of relying on the business rule
models as primary source for the test case generation.

The following bugs were found in hidden tasks that were not
enabled in the user interface. These tasks remained in the
business rule models and they would cause problems when
they were enabled again. Therefore we also tested them.

• There were tasks that first resulted in an exception, which
stated that certain attributes are missing. However, when
the attributes were set, it resulted in an exception that
said that the attributes are not enabled.

Fig. 5. TFMS Form for the AdminEdit Task

• There was a problem with a task that had a next state
in the model, which was not permitted by the SUT.
Furthermore, the error message of the SUT was wrong
in this case. It should list possible next states. However,
the list did not contain states, but tasks.

VI. CONCLUSION

We have developed an automatic test case generation ap-
proach for business rule models in the form of EFSMs. The
approach is based on property-based testing and written in C#
with the tool FsCheck.

First, we showed how model-based testing can be imple-
mented with FsCheck by a manual specification with a small
example. Then we discussed how our approach works in
detail. It takes XML files with the business rule models as
input and converts them into an object representation that is
used for FsCheck specifications and as model. FsCheck can
automatically derive command sequences from a specification
and it executes them directly on the SUT. Our approach also
includes attribute data generation for simple and complex data
types like objects, references or files. The attributes support
a variety of constraints, which are also encoded in the XML
business rule models.

We evaluated our approach in an industrial case study,
which was applied to a web service application from AVL,
a testfactory management suite. This case study revealed four
issues that needed to be fixed. Two of them concern the testing
framework, two the system-under-test. This demonstrates that
the approach is effective in finding bugs. The fact that not all
bugs are due to the system-under-test is well-known in the
area of automated testing.

One may wonder about the missing redundancy when
generating the test models from the business rules. When a rule
engine would be implemented optimally, then our approach
would only test the interpreter of the business rule models.

However, in practice the programmers often change the source
code without considering the rules. Hence, it makes sense to
verify that the SUT still conforms to the model. Especially for
custom rule engine implementations and evolving applications
it is important to test this conformance. Therefore, we have de-
veloped an automated approach that verifies this conformance
efficiently.

In future, we plan to apply these test cases in load testing,
where the question of redundancy is irrelevant.

ACKNOWLEDGEMENT

The research leading to these results was funded by the
Austrian Research Promotion Agency (FFG), project number
845582, Trust via cost function driven model based test case
generation for non-functional properties of systems of systems
(TRUCONF). The authors would like to thank Elisabeth Jöbstl,
Florian Lorber, Martin Tappler and the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper. Furthermore, we would like to thank
the FsCheck community and Kurt Schelfthout for providing
FsCheck and support for this tool.

REFERENCES

[1] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of haskell programs,” in Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ser.
ICFP ’00. New York, NY, USA: ACM, 2000, pp. 268–279. [Online].
Available: http://doi.acm.org/10.1145/351240.351266

[2] T. Arts, J. Hughes, U. Norell, and H. Svensson, “Testing AUTOSAR
software with QuickCheck,” in Software Testing, Verification and Vali-
dation Workshops (ICSTW), 2015 IEEE Eighth International Conference
on, April 2015, pp. 1–4.

[3] L. Lampropoulos and K. F. Sagonas, “Automatic WSDL-guided
test case generation for PropEr testing of web services,” in
Proceedings 8th International Workshop on Automated Specification
and Verification of Web Systems, ser. EPTCS, J. Silva and
F. Tiezzi, Eds., vol. 98, 2012, pp. 3–16. [Online]. Available:
http://dblp.uni-trier.de/db/series/eptcs/eptcs98.html#abs-1210-6110

[4] M. A. Cibrán and B. Verheecke, “Dynamic business rules for web
service composition,” in In Proc. of the 2nd Dynamic Aspects Workshop
(DAW05) in conjunction with AOSD, 2005.

[5] F. Rosenberg and S. Dustdar, “Design and implementation of a
service-oriented business rules broker.” in 7th IEEE International
Conference on E-Commerce Technology Workshops (CEC 2005).
IEEE Computer Society, 2005, pp. 55–63. [Online]. Available:
http://dblp.uni-trier.de/db/conf/wecwis/cecw2005.html#RosenbergD05a

[6] N. Milanovic and M. Malek, “Current solutions for web service
composition.” IEEE Internet Computing, vol. 8, no. 6, pp. 51–59,
2004. [Online]. Available: http://dblp.uni-trier.de/db/journals/internet/
internet8.html#MilanovicM04

[7] K. T. Cheng and A. S. Krishnakumar, “Automatic functional test
generation using the extended finite state machine model,” in
Proceedings of the 30th International Design Automation Conference,
ser. DAC ’93. New York, NY, USA: ACM, 1993, pp. 86–91. [Online].
Available: http://doi.acm.org/10.1145/157485.164585

[8] L. M. López, H. Ferreiro, and T. Arts, “A DSL for web services
automatic test data generation,” in Draft Proceedings of the 25th Inter-
national Symposium on Implementation and Application of Functional
Languages, 2013.

[9] H. Li, S. Thompson, P. Lamela Seijas, and M. A. Francisco,
“Automating property-based testing of evolving web services,” in
Proceedings of the ACM SIGPLAN 2014 Workshop on Partial
Evaluation and Program Manipulation, ser. PEPM ’14. New
York, NY, USA: ACM, 2014, pp. 169–180. [Online]. Available:
http://doi.acm.org/10.1145/2543728.2543741

[10] L. Fredlund, C. Benac Earle, A. Herranz, and J. Marino, “Property-
based testing of JSON based web services,” in Web Services (ICWS),
2014 IEEE International Conference on, June 2014, pp. 704–707.

[11] C. Benac Earle, L.-A. Fredlund, A. Herranz, and J. Mariño, “Jsongen:
A QuickCheck based library for testing JSON web services,” in
Proceedings of the Thirteenth ACM SIGPLAN Workshop on Erlang, ser.
Erlang ’14. New York, NY, USA: ACM, 2014, pp. 33–41. [Online].
Available: http://doi.acm.org/10.1145/2633448.2633454

[12] M. A. Francisco, M. López, H. Ferreiro, and L. M. Castro, “Turning
web services descriptions into QuickCheck models for automatic
testing,” in Proceedings of the Twelfth ACM SIGPLAN Workshop on
Erlang, ser. Erlang ’13. New York, NY, USA: ACM, 2013, pp. 79–86.
[Online]. Available: http://doi.acm.org/10.1145/2505305.2505306

[13] M. Papadakis and K. Sagonas, “A PropEr integration of types and
function specifications with property-based testing,” in Proceedings
of the 10th ACM SIGPLAN Workshop on Erlang, ser. Erlang ’11.
New York, NY, USA: ACM, 2011, pp. 39–50. [Online]. Available:
http://doi.acm.org/10.1145/2034654.2034663

[14] C. Runciman, M. Naylor, and F. Lindblad, “Smallcheck and lazy
SmallCheck: Automatic exhaustive testing for small values,” in
Proceedings of the First ACM SIGPLAN Symposium on Haskell, ser.
Haskell ’08. New York, NY, USA: ACM, 2008, pp. 37–48. [Online].
Available: http://doi.acm.org/10.1145/1411286.1411292

[15] J. Hughes, “QuickCheck testing for fun and profit,” in Practical Aspects
of Declarative Languages, ser. Lecture Notes in Computer Science,
M. Hanus, Ed. Springer Berlin Heidelberg, 2007, vol. 4354, pp. 1–32.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-69611-7 1

[16] A. S. Kalaji, R. M. Hierons, and S. Swift, “Generating feasible
transition paths for testing from an extended finite state machine
(EFSM).” in Proceedings of the 2nd IEEE International Conference
on Software Testing, Verification and Validation (ICST’09). IEEE
Computer Society, 2009, pp. 230–239. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icst/icst2009.html#KalajiHS09

[17] Y. Wada and S. Kusakabe, “Performance evaluation of a testing
framework using QuickCheck and Hadoop,” Journal of Information
Processing, vol. 20, no. 2, pp. 340–346, 2012. [Online]. Available:
http://dx.doi.org/10.2197/ipsjjip.20.340

[18] B. Orriëns, J. Yang, and M. Papazoglou, “A framework for business
rule driven service composition,” in Technologies for E-Services, ser.
Lecture Notes in Computer Science, B. Benatallah and M.-C. Shan,
Eds. Springer Berlin Heidelberg, 2003, vol. 2819, pp. 14–27. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-39406-8 2

[19] R. G. Ross, Principles of the Business Rule Approach. Boston:
Addison-Wesley, 2003. [Online]. Available: http://www.worldcat.org/
search?qt=worldcat org all&q=0201788934

[20] H. Herbst, Business Rule-oriented Conceptual Modeling. Springer
Science & Business Media, 1997. [Online]. Available: http://books.
google.com/books?id=uIRul0nO8RYC&hl=de

[21] A. Charfi and M. Mezini, “Hybrid web service composition: Business
processes meet business rules,” in Proceedings of the 2Nd International
Conference on Service Oriented Computing, ser. ICSOC ’04. New
York, NY, USA: ACM, 2004, pp. 30–38. [Online]. Available:
http://doi.acm.org/10.1145/1035167.1035173

[22] F. Rosenberg and S. Dustdar, “Business rules integration in BPEL
- a service-oriented approach,” in Proceedings of the Seventh IEEE
International Conference on E-Commerce Technology (CEC’05), July
2005, pp. 476–479.

[23] J. Mendling, “Business process execution language for web services.”
EMISA Forum, vol. 26, no. 2, pp. 5–8, 2006. [Online]. Available:
http://dblp.uni-trier.de/db/journals/emisa/emisa26.html#Mendling06

