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Abstract. We compare conformance checking based on symbolic exe-
cution to conformance checking via bounded model checking. The ap-
plication context is fault-based test case generation, focusing on real-
time faults. The existing bounded model checking approach is performed
on timed automata. It supports time-relevant mutation operators and
a preprocessing functionality for removing silent transitions and non-
determinism. The new symbolic execution approach is performed on
timed action systems, which are a novel variant of Back’s action sys-
tems augmented by clock variables and real-time semantics. It supports
the same set of mutation operators, silent transitions, non-determinism
and data variables. We show how to encode timed automata as timed
action systems and perform experiments on three variants of a car alarm
system, to investigate the influence of silent transitions, non-determinism
and data variables. Both approaches rely on the SMT solver Z3.

1 Introduction

Time-critical systems can often be far more complex than their untimed coun-
terparts. Due to this raised complexity, they require an especially thorough ver-
ification and validation. For example, in the automotive domain, companies rely
heavily on testing to ensure the quality of their systems. Manual test generation
is a tedious and error-prone process, without guarantee of capturing all relevant
parts of the system. Model-based test-case generation deals with these problems
by automatically generating test cases on the basis of a test model. The tests are
usually generated based on coverage criteria, like e.g., state or transition coverage
of the test model. Model-based mutation testing is a fault-based approach: we
define a set of fault models, so called mutation operators, that are systematically
applied to the test model, creating a set of faulty models, called mutants. The
main part of the test-case generation consists of performing a conformance check
between the original test model and its mutants. In case of non-conformance, we
build a test case covering the shortest path from the initial state to the confor-
mance violation. Thus, we gain a test suite covering all non-equivalent mutants,
able to detect every faulty implementation that implements any of the specified
fault models. In this paper we present two methods for this conformance check,
based on two types of timed models: the first approach is done via bounded
model checking and performed on timed automata. This approach was already
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Fig. 1. Car alarm system: correct specification (left) and a mutant (right).

published [5]. The second new one is based on symbolic execution and works on
timed action systems. We define a novel variant of timed action systems closely
related to timed automata, giving them a trace based semantics. We compare
both approaches in terms of runtime, applied to different models of a car alarm
system. Given that the mutation operators might yield hundreds of mutants, the
performance of the conformance check is crucial.

The present paper, written for the Festschrift in honour of Frank S. de Boer,
touches upon three of his active research topics: symbolic execution [1, 30], real-
time behaviour [18, 12, 8], and testing [24, 23, 30]. Our study indicates that sym-
bolic execution is a promising candidate for automatically analysing real-time
behaviour. As it has been pointed out [7], this is especially relevant to expressive
modelling languages, like e.g. Real-Time ABS [12, 8].

Running example. We will illustrate the different approaches on a car alarm
system, that was provided by Ford as a use case for the past EU FP7 project
MOGENTES (http://www.mogentes.eu), and was since used as an internal
benchmark for various publications [3, 5]. The car alarm system is illustrated as
a timed automata in Figure 1: it provides the user with the options to open, close,
lock and unlock the doors. If the doors stay locked and closed for 20 seconds,
the system is armed. Forcing the doors open, without unlocking them first, will
cause the activation of the sound and flash alarm. The alarms will deactivate
either if the doors are unlocked, or after 30 and 300 seconds, respectively.

The remainder of the paper is structured as follows: first, in Section 2 we
will give some preliminaries, covering timed automata, model-based mutation
testing and bounded model checking. Then, in Section 3 we will introduce timed
action systems, giving them symbolic trace semantics and explaining how to



apply a symbolic conformance check based on the Symbolic Timed Input Output
Conformance (stioco) relation. In Section 4 we will present our experimental
results, comparing symbolic execution to the bounded model checking approach.
Finally, in Section 5 we discuss related work and conclude the paper in Section 6.

2 Preliminaries

2.1 Timed Automata

Timed Automata (TA) [9] are a widely used formalism for specifying time crit-
ical systems. They are used in several areas, as for instance schedulability anal-
ysis [18]. Basic TA are finite state machines, augmented by clocks to measure
the passage of time. Time is considered to only pass in states, and may be re-
stricted by invariants, enforcing that the states are left before the invariants are
broken. Transitions are considered to take zero time. They can be restricted by
clock constraints in their guard, and each transition may be linked to a set of
clocks that are reset upon passage of the transition. The automaton in Figure 1
(left) contains 5 clocks. The transition from q1 to q2 resets the clock c. In q2 the
passage of time is restricted by the invariant c ≤ 20 and the transition from q2
to q3 is restricted by the time guard c == 20.

The experiments conducted for this work were applied on three classes of
Timed Automata with Inputs and Outputs, meaning that the set of observable
actions is spilt into two disjoint sets of inputs (denoted by a question mark) and
outputs (denoted by an exclamation mark):

1. Deterministic Timed Automata. We consider a TA to be deterministic,
if it does not contain silent transitions and for all transitions with same source
state and same action label, their guards cannot be satisfied simultaneously.

2. Non-Deterministic Timed Automata with Silent Transitions. Silent
transitions are considered internal actions, that are not observable to the
user. Both, non-determinism and silent transitions cannot be removed in
general [11]. Recently, we presented a bounded approach for silent transition
removal and determinization [22]: it unfolds the automaton up to a certain
depth and determinizes it, creating a deterministic tree-shaped TA.

3. Timed Automata with Data Variables. Another extension to timed
automata is the support for data variables. These are integer variables, that
can be used both in guards and assignments of transitions. They can also be
used as parameters for transitions, where the parameters for input transitions
are chosen by the user, and all other parameters are chosen by the system.

2.2 Model-based Mutation Testing

As already stated by Dijkstra [14], one of the main downsides of testing is the
fact that it can never prove the complete absence of bugs in a system under test
(SUT). Model-based mutation testing addresses this problem, by generating tests
able to prove the absence of certain kinds of bugs in deterministic SUTs.
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Fig. 2. Model-based mutation testing [4]

The workflow of model-based mutation testing is illustrated in Figure 2. It
starts from the requirements to produce a test model (top left corner), that
is processed by the mutation tool (according to a set of mutation operators),
to create a set of mutated models (top right corner). For a mutant example
see Figure 1. Next, each of the model mutants is checked for conformance to
the test model. If no conformance violation is detected, the mutant is considered
equivalent, indicating that the concrete mutation did not propagate to any visible
failure. However, if non-conformance is detected, the mutation introduced a fault
with observable consequences. In that case, we produce an abstract test case,
covering the shortest path to the observed conformance violation. The test suite
consisting of all produced abstract test cases is then passed on to the test case
executer. There, the test cases are concretized and executed on the SUT. If a
deterministic SUT shows the same faulty behaviour as any of the mutants, the
corresponding test case is guaranteed to detect the fault and returns the verdict
fail. If the SUT conforms to the test model, a pass verdict is issued.

The conformance relation may vary: in untimed systems, the Input Output
Conformance (ioco) by Tretmans [25] is widely used. The intuition behind ioco
is that for all traces of the specification, the outputs of the implementation (in
our case, the mutants) must be a subset of the outputs of the specification.
Several extensions of ioco to real-time exist. For our bounded-model checking
of TAs, we use the Timed Input Output Conformance (tioco) introduced by
Krichen & Tripakis [19]. Here, time is seen as output. For the theory and first
experimental results on model-based mutation testing with TA we refer to [5].

For the symbolic execution approach on timed action systems, we rely on a
symbolic conformance relation. The first Symbolic Input Output Conformance
(sioco) relation was introduced by Frantzen et al. [16]. Von Styp et al. [26]
expanded the relation by adding support for time, defining the stioco relation for
Symbolic Timed Automata (STA). We use a very similar conformance relation
to stioco, based on timed action systems. Additionally we also support silent
transitions, which are not handled by Von Styp. et al. The symbolic conformance
check for untimed action systems was recently published [6].

Together with the Austrian Institute of Technology, we developed a model-
based mutation testing tool-chain working on UML-models, Action Systems and
TA (www.momut.org). Timed action systems are not yet officially supported.

2.3 Bounded Model Checking

In our first work on model-based mutation testing for TA [5], we proposed a con-
formance check via bounded model checking. We used tioco as a conformance



relation and showed how to encode the conformance-check as a language inclu-
sion problem. Via bounded model checking, we searched for a state where the
mutant can perform an output (since we check tioco conformance, this includes
the passage of time) that is not allowed by the specification.

We bounded the language inclusion by a bound k, and encoded it as an SMT-
formula. This formula is split into two parts: the first part is the reachability
check, which contains the correct step relation for k steps, of both the specifica-
tion and the mutants. It calculates all states that are reachable within k steps.
The second part performs the conformance check for all states that are found
by the reachability. The conformance formula is a conjunction of a valid step in
the mutant (taking only the outputs into account) and the negation of all valid
steps of the specification. Thus, the formula is satisfiable, if the mutant is at
some point able to generate an output that is not allowed by the specification. If
that happens, the SMT solver returns a concrete model that serves as a counter
example for the conformance.

This counter example can then be transformed into a real test case by adding
verdicts and symbolic time constraints. We use the SMT solver Z3 and its feature
for incremental solving.

2.4 Conventions

Generally, we assume the usage of two-sorted logic, where one sort d is defined
for discrete data and the other sort t for time-related formulas and terms. We
further require that the constant 0t of sort t and the binary addition +t for pairs
of sort t must be defined. In addition, the relations ≤, <,=, >≥ must be defined
for all pairs of sorts d and t, i.e. any comparison between time and data must
be possible. Note that in practise, we allow for more sorts in our models, such
as user-defined enumeration sorts, but we use a type checker to ensure that only
meaningful comparisons are performed.

We will denote the set of terms containing variables from a set X by Te(X)
and first-order formulas containing free variables from the same set by Fr(X).
The function free(ϕ) maps a formula ϕ to the set of all free variables in ϕ.

The set CC(X,Y ) denotes the set of clock constraints, with clock variables
in X and constraint operands in Y ∪ Te(∅). A clock constraint is of the form
x ⊗ y, with x ∈ X, y ∈ Y ∪ Te(∅) and ⊗ ∈ {≤, <,=, >≥}, i.e. it is comparison
between a clock variable and a variable or a constant term.

The set of all total functions from A to B shall be denoted by BA. The
substitution of variables shall be denoted by g[σ], where σ is a function from
variables to terms and g is some formula or term. Hence, the signature of [σ] is
given by [σ] : Te(X) ∪ Fr(X)→ Te(X) ∪ Fr(X), where X is a set of variables.
The term fX denotes the domain restriction of a function f to the set X.

Sequences containing e1, e2, . . . , en will be denoted by 〈e1 · e2 · · · en〉 and the
concatenation of two sequences σ1 and σ2 will be denoted by σ1ˆσ2.



3 Timed Action Systems

Action Systems (ASs) were introduced by Back and Kurkio-Suonio [10] for mod-
elling distributed systems. In more recent work, ASs have been used as a mod-
elling formalism for mutation-based test-case generation for reactive systems [4,
2]. An event-centred view of ASs has been taken in this context, for deriving
test cases and for checking of ioco conformance between ASs. More concretely,
for model-based mutation testing each action is assigned a label and an action
type, which identifies the action as being an output, input or internal action.

For the definition of Timed Action Systems (TASs), we also follow this ap-
proach. However, the modelling formalism discussed in the following is more
restricted with respect to discrete actions than other variants of the AS formal-
ism. Nevertheless, we also extend traditional ASs by explicitly accounting for
time, which is inspired by TA.

In our approach, an AS defines a set of actions and corresponding guarded
commands, a set of state variables and an initialisation for these variables. An
action defines a set of parameters and has an action type. For each action, the
corresponding guarded command defines the conditions in which the action may
be executed and the effect of the action execution. The guarded commands may
access state variables and the parameters of the corresponding action. There
may be several actions with the same label and if multiple action share the same
label, they must also have the same parameters and action type.

During the execution of an AS, at each step an enabled action is chosen non-
deterministically and executed. Through this the state is continuously updated
until the execution terminates, when none of the actions is enabled. An action
is enabled if the guard of its corresponding guarded command is satisfiable.

In order to allow for the modelling of time, we extend ASs by adding clock
variables as in TA. In between the execution of two discrete actions, the system
may wait for certain amounts of time, which increases the values of the clock
variables. This act of waiting will also be referred to as delay in the following.
To be able to define the conditions for the actual waiting time, we add time
invariants to ASs. The time invariant of an AS must hold in all states and
consists of several clauses. A clause defines a time constraint which must hold if
the state variables satisfy the condition defined by the clause. Finally, guarded
commands may define conditions using clocks and may reset clocks.

In the following, we define the syntax and a trace-based semantics for TASs.
Both are inspired by the work of Frantzen et al. [16] and von Styp et al. [26],
who use STA. Since STA are similar to TA, our version of stioco can be seen
as an extension of the original definition [26], as we also allow internal actions.

3.1 Syntax

Figure 3 illustrates the structure of the concrete syntax of TASs and models
a part of the CAS. It specifies 5 real-valued clocks, that the initial state of the
system shall be OpenAndUnlocked, that the system must not wait longer than 20 time
units in state ClosedAndLocked and defines the actions. The actions are labelled with



clocks [ Real ]{ c;d;e;f;g }
init {

location := OpenAndUnlocked ;}
invariant {

if location == ClosedAndLocked then c <= 20;
.. . }

actions {
! armedOn ( ) if location == ClosedAndLocked and c == 20 then {

location := Armed ; };

? open ( ) resets e if location == Armed then {
location := BeforeAlarm ; };

.. . }

Fig. 3. A snippet of the TAS model of the CAS.

armedOn and open. These two events are fully defined through two and three actions
respectively. In the following, we present the abstract syntax of TASs.

Definition 1 (Abstract Syntax of Timed Action Systems). A timed ac-
tion system is a tuple TAS = 〈V, I, C, ΛI , ΛU , ι, Inv,A〉, where V is the set of
state variables, I is the set of parameter variables and C is the set of clock vari-
ables , with V, I, C being mutually disjoint. Λ = ΛI∪ΛU is the set of action labels,
with ΛI being the set of input action labels and ΛU being the set of output action
labels. The constant τ /∈ Λ denotes an internal action and we set Λτ = Λ ∪ {τ}.
The initialisation of the action system is ι ∈ Te(∅)V . Inv is the time invariant
of TAS, which is of the form

∧
i dci → cci, with dci ∈ Fr(V) and cci ∈ CC(C,V)

for all i. The set A ⊆ Λτ × Fr(V ∪ I)× CC(C,V)× Te(V ∪ I)V × P(C) is the
set of all actions. For a = (λ, g, gc, up, r) ∈ A, λ is called label, g is called guard,
gc is the clock guard, up is the update mapping, defined by assignments in the
guarded command and r is a set of clocks, which are reset by executing a.

Before we define semantics for TASs, we introduce two requirements and two
auxiliary functions. These are similar to the requirements defined for Symbolic
Transition Systems (STSs) by Frantzen et al. [16]. The functions arity and para
associate each action with its number of parameters and a tuple containing its
parameters respectively.

1. For all actions λ, para maps λ to a tuple of distinct parameter variables
and for (λ, g, gc, up, r) ∈ A it holds that free(g) ⊆ V ∪ para(λ) and up ∈
Te(V ∪ para(λ))V .

2. As for τ -edges of STSs, we disallow the definition of parameter variables for
internal actions of TASs, i.e. for all τ -actions, it must hold that arity(τ) = 0.

Example 1 (Abstract Syntactical Representation of the CAS). The CAS defined
in Figure 3 is a TAS 〈V, I, C, ΛI , ΛU , ι, Inv,A〉, where V = {location}, I = {},
C = {c, d, e, f, g}, ΛI = {open, . . .}, ΛU = {armedOn, . . .}, ι = {location 7→
OpenAndUnlocked}, Inv = (location = ClosedAndLocked) → c ≤ 20 ∧ . . .
and A = {o, a, . . .}. With actions o = (open, location = Armed,>, {location 7→
BeforeAlarm}, {e}) and a = (armedOn, location = ClosedAndLocked, c =
20, {location 7→ Armed}, {}). Parts omitted in Figure 3 are represented by dots.



3.2 Semantics and stioco

In this subsection, we give a symbolic trace semantics for TASs and discuss
stioco checking. A symbolic trace represents one (sequential) run of the sym-
bolic execution of a TAS. This symbolic trace semantics forms the basis for our
implementation of the symbolic executor and the stioco conformance checker.

The trace-based semantics must fulfil four requirements: a trace must (1)
start with a delay, (2) consist of alternating sequences of discrete actions and
delays, and (3) end in a delay. The first two requirements are placed on the
semantics in correspondence to the definition of traces by von Styp et al. [26].
Conversely, the third requirement serves to simplify conformance checking while
it does not limit generality as zero delays are possible. Additionally, (4) a trace
should handle internal actions appropriately: consider the concrete timed trace
ct = 〈1·!a · 2 · τ · 3·?b · 0〉. For checking tioco conformance one is only interested
in observable traces of the specification [19]. Thus, we would project ct to the
set of observable input and output actions, erasing the τ -action and summing
up the two consecutive delays: ct′ = 〈1·!a · 5·?b · 0〉.

In the symbolic setting, we use symbolic traces where constant time delays are
replaced by symbolic delay variables. As common in symbolic execution, these
symbolic delays are defined via constraints. We distinguish between two kinds
of delay variables: observable delays ti, which are part of the observable trace
and unobservable delays di,j that appear only in constraints. Observable delays
are always defined in terms of unobservable delays. For example, the symbolic
trace st = 〈d1·!a · d2,1 · τ · d2,2·?b · d3〉 including an unobservable τ -action would
be projected to an observable trace st′ = 〈t1·!a · t2·?b · t3〉 with the constraints
t1 = d1, t2 = d2,1 + d2,2 and t3 = d3. Note that while observing the delay t2, it
is not possible to distinguish between the internal delays d2,1 and d2,2.

So far, we only considered delays. For the trace-based semantics we need to
update the state of variables and clocks along a trace and collect the constraints:
discrete and time guards of actions, time invariants and constraints which express
that consecutive unobservable delays sum up to observable delays. In addition, it
is necessary to keep track of the set of unobservable delays along a trace, because
we will hide these via existential quantification for the conformance check.

In order to define the formal semantics, we introduce concepts similar to
those used for the original definition of stioco [26]. For elegant clock update
definitions, we introduce the singleton sets D = {d} and T = {t} containing an
unobservable and an observable delay, respectively. Since we need to distinguish
between different occurrences of variables in a trace we introduce the disjoint
indexed sets for observable delays Ti, unobservable delays Di,j and parameters
Ii with i, j ∈ N. The index i corresponds to the position in the trace and j
corresponds to the number of delays since the last observable action.

Furthermore we assume that there exists a bijective variable-renaming ri :
I ∪T → Ii∪Ti, which adds an index i to non-indexed variables and there exists
a bijective variable-renaming dri,j : D → Di,j , which adds indexes i and j to

unobservable delay variables. We set T̂ =
⋃
i Ti, Î =

⋃
i Ii and D̂ =

⋃
i

⋃
j Di,j .



We model symbolic clock updates with a function % ∈ Te(C ∪ D)C , with
%(c) = c+ d for all c ∈ C and d ∈ D. With this machinery we can now elegantly
define clock updates in step i, j as a composed substitution function [dri,j ] ◦ %,
first replacing the clocks with the term c+ d and then indexing d appropriately.

For clock resets of all clocks in a set r, we define a term-mapping FO(r),
such that FO(r)(c) = 0t for c ∈ r and FO(r)(c) = c otherwise, i.e. it sets clocks

in r to zero. Finally, we define the set of all variables as V̂ ar = V ∪Î ∪D̂∪ T̂ ∪C.

Symbolic Trace Semantics. The symbolic trace semantics of a TAS representing
its symbolic execution is then given by the generalised transition relation ⇒ ⊆
((T̂ · Λ)∗ · T̂ ) × Fr(V̂ ar) × Te(V ∪ Î)V × Te(C ∪ D̂)C × P(D̂), which is defined
below. It is a set of 5-tuples (σ, pc, q, qc, D), where σ is an alternating sequence
of delays and actions; pc is the path condition, i.e. the conditions which need
to be satisfied for σ to be executable; q is the discrete symbolic state of the
variables V, i.e. a mapping from state variables to terms over state variables and
parameters Î; qc is the symbolic state of the clocks C, i.e. a mapping from clocks
to sums of unobservable delays, and D contains the set of unobservable delays
di,j collected along the observable symbolic trace σ.

Definition 2 (Generalized Transition Relation). Given a timed action sys-
tem TAS = 〈V, I, C, ΛI , ΛU , ι, Inv,A〉, its generalised transition relation ⇒ is
defined to be the smallest set, which satisfies the following three rules:

(〈t1〉, Inv ∧ Inv[[dr1,1] ◦ %] ∧ t1 = d1,1, id, ([dr1,1] ◦ %)C , {d1,1}) ∈ ⇒
(Tε)

(σˆ〈ti〉, pc, q, qc, D) ∈ ⇒ (λ, g, gc, up, r) ∈ A λ 6= τ

(σˆ〈ti · λ · ti+1〉, pc ∧ ti+1 = di+1,1 ∧ dc ∧ tc, q′, q′c, D ∪ {di+1,1}) ∈ ⇒
(Tλ)

where

q′ = ([q] ◦ ([ri+1] ◦ up))V ,
q′c = ([qc] ◦ ([FO(r)] ◦ ([dri+1,1] ◦ %)))C,
dc = (g[ri+1])[q] ∧ (gc[q])[qc] ∧ (Inv[q′])[[qc] ◦ FO(r)] and
tc = (Inv[q′])[q′c]

(σˆ〈ti〉, pc ∧ ti =
∑k
j=1 di,j , q, qc, D) ∈ ⇒ (τ, g, gc, up, r) ∈ A

(σˆ〈ti〉, pc ∧ ti =
∑k+1
j=1 di,j ∧ dc ∧ tc, q′, q′c, D ∪ {di,k+1}) ∈ ⇒

(Tτ)

where

q′ = [q] ◦ up,
q′c = ([qc] ◦ ([FO(r)] ◦ ([dri,k+1] ◦ %)))C,
dc = g[q] ∧ (gc[q])[qc] ∧ (Inv[q′])[[qc] ◦ FO(r)] and
tc = (Inv[q′])[q′c]



Rule Tε is the base case expressing the initial delay t1 before the first action, if
any. It states that the time invariant must hold before and after this delay. The
identity function id expresses the unchanging of the discrete state. The clocks C
are updated accordingly.

Rule Tλ expresses that the symbolic execution of an observable action ex-
tends the observable trace by a sequence 〈λ · ti+1〉, where λ is the corresponding
action label and ti+1 is an observable delay. A new unobservable delay in step
i+1, 1 is added to the set of unobservable delays and set to be equal to the
observable delay in the path condition. Additionally, the discrete (dc) and time
constraints (tc) are added to the path condition as well. Furthermore, the dis-
crete state q is updated to q′ according to the update function up of the action.
This discrete state update takes also care of the proper variable renaming (or
variable indexing) via function ri+1. The clocks are partially reset according to
the reset set r and then delayed.

Rule Tτ expresses that the symbolic execution of an internal action (with
a τ label ) does not change the observable trace σˆ〈ti〉, but adds a new delay
di,k+1 to the set of unobservable delays D. The new delay in step i, k+ 1 is
added to the path condition, together with the discrete (dc) and time constraints
(tc). Furthermore, the discrete state q is updated to q′ according to the update
function up of the action. The clocks are partially reset according to r and then
delayed according to di,k+1.

The discrete constraint dc mentioned in both rules Tλ and Tτ contains not
only discrete conditions but constrains the execution of discrete actions. For a
discrete action to be executable, the guard g and the clock guard gc must be
satisfied in the pre state and the time invariant must be satisfied after updating
the discrete state and resetting the clocks. The time constraint tc analogously
constrains the length of the delay, by specifying that the time invariant must
hold after executing the discrete action, resetting and updating clocks.

Example 2 (Generalized Transition Relation of the CAS). In this example, we
list two elements of the generalised transition relation of the CAS. It contains
by definition through rule Tε the element (〈t1〉, I ∧ I ′ ∧ t1 = d1,1, {location 7→
location},

⋃
x∈C{x 7→ x + d1,1}, {d1,1}), where I = (location = ClosedAnd-

Locked) → c ≤ 20 ∧ . . . and I ′ = (location = ClosedAndLocked) → c +
d1,1 ≤ 20 ∧ . . .. A trace consisting of only the open-action, which executes
the open-action as defined in Figure 3 corresponds to the tuple (〈t1·?open ·
t2〉, pc, q, qc, {d1,1, d2,1}), where q = {location 7→ BeforeAlarm}, qc = {e 7→
d2,1}∪

⋃
x∈C\{e}{x 7→ x+d1,1+d2,1} pc = I∧I ′∧t1 = d1,1∧t2 = d2,1∧dc∧tc, with

dc = (location = Armed) ∧ (BeforeAlarm = ClosedAndLocked) → c+ d1,1 ≤
20∧. . . and tc = (BeforeAlarm = ClosedAndLocked)→ c+d1,1+d2,1 ≤ 20∧. . .

Conformance Checking. Since the stiocos conformance relation for TASs is
very similar to the definition of stioco of von Styp et al. [26], we will not give
the full definition, but rather list the three most important differences:

– We use the semantics discussed above. As unobservable delays along a trace
are relevant for conformance, symbolic states and symbolic observations con-



sider these as well. Hence, states and observations are tuples, where one tuple
element contains the unobservable delays which have been collected before
reaching a symbolic state or before observing some symbolic observation.

– The symbolic observation of delays needs to be adapted as well, i.e. a sym-
bolic counterpart of the elapse(s)-function [19] must be defined, which maps
a state s to the set of delays, which can be executed without executing an
observable action. Hence, a symbolic elapse(s)-function could be defined as a
trace, which consists of only one delay, executed in state s. More concretely,
it could be defined as (t1, pc, q, qc, D) ∈⇒, but with shifted indexes and a
substitution of the actual state into pc, q and qc.

– The original stioco definition uses a function Φ, which gives a condition for
observing some observation after a given trace σ. To account for internal
actions, this function needs to existentially quantify over the sets of unob-
servable delays collected along σ.

The conformance check is implemented in the same fashion as the sioco con-
formance check for untimed action systems [6], which is itself inspired by the
ioco conformance checker used in [3, 2]. More concretely, it performs a bounded
depth-first search for unsafe states, which are states in which non-conformance
may be observed. For this purpose, both mutant and specification are symboli-
cally executed in parallel, such that they synchronise on observable actions, but
execute internal actions independently from each other. In order to ensure input-
enabledness of the mutant, which is a requirement for stioco, we perform an
angelic completion for the mutant. Hence, we implicitly add self-loops to states
for all non-specified inputs. At each step, a conformance check is performed and
if non-conformance is detected, the trace leading to the current state and the
satisfiable non-conformance condition are returned.

However, a naive implementation of this procedure would suffer from prob-
lems such as path explosion [13] and thus be far too slow to be useful. Con-
sequently, several optimisations have been implemented, which can roughly be
grouped into three categories:

Pruning of search tree. If during the search for unsafe states, we reach a
symbolic state which has already been visited, we prune the search tree.
For this purpose, we implemented symbolic checks for equivalence of states,
which are based on the state inclusion condition defined by Gaston et al. [17].
These checks deem two symbolic states to be equivalent, if they correspond
to the same sets of concrete states.

Precomputation. We precompute symbolic execution graphs, which encode
all executable traces for the specification. This information can be reused
during the conformance check and results in a performance gain, as we check
conformance for hundreds of different mutants with the same specification.

Syntactic mutation analysis. As long as the mutation has not been exe-
cuted, the number of satisfiability checks can be reduced drastically, e.g.
by using the precomputed execution graph for the mutant as well.



3.3 Encoding Timed Automata using Timed Action Systems

In order to encode a Timed Automaton (TA) as a TAS, we essentially create
a TAS having the same set of state variables plus one additional state variable
representing the current location and having the same set of transitions. The
procedure for translating TA into TASs can be structured as follows:

1. Create a TAS with the same set of state variables, clocks and action labels.
2. Create a set of constants Loc, where each constant represents a location

in the TA. Define a function rep, which maps locations to their respective
constants.

3. Add an additional state variable called location, which takes values in Loc,
and rename an existing variable with the same name, if such a variable exists.
Initialise location with rep(l0), where l0 is the initial location of the TA.

4. For each transition of the TA with source location l and target location l′:

4.1. Create an action with same guards, clock resets, state updates and label.
4.2. Add location = rep(l) to the guard and add location 7→ rep(l′) to the

state update.

5. Initialise the time invariant to >, then for each invariant i of a location l:
Conjunct the clause rep(l) = location→ i to the time invariant of the TAS.

Any TAS that was built according to this structure, can also be encoded as
a TA, by reverting the steps above.

4 Experimental Results

To give a first comparison of the two approaches we use the car alarm system
that was introduced in Section 1. We defined different variants, containing model
elements such as silent transitions and data variables, that can be challenging for
the conformance checks. In all the experiments we use the following settings: we
translated from timed automata to timed action systems as closely as possible:
The different models contain the same number of states and transitions and the
same sets of clocks and variables. We used eight different mutation operators
(similar to those in [5], excluding the changing of action labels, that would have
been problematic to implement for the TAs), that were implemented equally
for both types of models. However, due to the different modelling styles, the
amount of mutants did vary slightly in some cases. All experiments were run on
a MacBook Pro with a 2.8 GHz Intel Core i7 and 8 GB RAM.

Table 1. Computation time for the different conformance checks on the deterministic
version of the car alarm system.

Depth Bounded Model Checking Symbolic Execution

Mean Median Max Min Mean Median Max Min

12 1.4s 1.1s 33s 0.07s 1.7s 0.02s 38.83s ∼ 0s
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Fig. 4. Partial models of the car alarm system with silent transitions.

4.1 Deterministic Car Alarm System

We first investigate the model in Figure 1. It is deterministic and has 5 clocks,
16 locations and 25 transitions. The results of applying both approaches are
displayed in Table 1. The bounded model checking performed slightly faster
and at a very constant rate, without many statistical outliers. The symbolic
execution, with the median far below the mean value, was very fast for most
of the mutants, however there were some that took significantly longer than
the rest, and increased the average processing time. The overall runtime of the
bounded model checking was 30.0 minutes for 1, 320 mutants, compared to 27.5
minutes for 968 mutants in the symbolic execution.

4.2 Non-Deterministic Car Alarm System

The next model contains a silent transition that non-deterministically delays
the 20 seconds timer responsible for arming the system by up to two seconds.
This changes the time constraints for the arming of the system and adds non-
determinism for the unlock and open transitions leaving the locations. We used
this model previously [22]. Besides the non-determinism, it differs from the orig-
inal car alarm system, by underspecifying whether the sound alarm or the flash
alarm is activated first. The bounded model checking approach can neither deal
with non-determinism, as it might lead to spurious counterexamples, nor with
silent transitions. As already described in Section 2, this can be tackled, by
a bounded determination of the automaton in a preprocessing step. However,



Table 2. Computation time for the different conformance checks on the partial models
of the non-deterministic version of the car alarm system.

Model Depth Bounded Model Checking Symbolic Execution

Mean Median Max Min Mean Median Max Min

Partial 1 8 9.7s 8.0s 85.1s 0.3s 0.28s 0.04s 16.78s ∼ 0s

Partial 2 12 1.6s 1.63s 37.3s 0.08s 0.08s 0.03s 2.28s ∼ 0s

Complete 12 x x x x 0.79s 0.06s 360.84s ∼ 0s

this preprocessing leads to a severe state space explosion. If applied to the non-
deterministic car alarm system, with a maximum depth of 12, the deterministic
automaton contains 13, 545 locations, and can not be processed by the test case
generation tool anymore. We thus split the original model into two tioco-conform
partial models, where the first one captures the different variants of locking, un-
locking, closing and opening the doors, up to the first arming transition. The
second one only contains one direct path to the armed state, but covers the rest
of the system. Both partial models are illustrated in Figure 4. This keeps most
of the branching in the first smaller system, and the main functionality in the
second and larger system. The results of applying the approaches to these mod-
els are illustrated in Table 2. The overall runtime for the first partial model was
32.8 minutes for 220 mutants for applying the bounded model checking and 48.1
seconds for 168 mutants for the the symbolic execution. For the second partial
model, the bounded model checking took 34.1 minutes for 1, 263 mutants and
the symbolic execution only needed 68.1 seconds for 832 mutants.

The ability of the symbolic approach, to process the models without unfolding
them first, clearly gives it an advantage here. Not only is it a lot faster on the
partial models, it was also able to process the complete model. Additionally, it
has on average even been faster than in the deterministic case. There are two
main reasons for this behaviour. Firstly, three mutants have not been checked for
conformance automatically, because they ran into a timeout (ten minutes), and
were excluded from the experiments. However, manual inspection revealed that
these mutants conform to the specification. Secondly, the introduction of a silent
transition led to a much larger portion of nonequivalent mutants. Aichernig et al.
showed that ioco checking of equivalent mutants takes significantly longer than
ioco checking of non-equivalent mutants [3], thus a lower number of equivalent
mutants can explain the reduction in average runtime from 1.7s to 0.79s.

4.3 Car Alarm System with PIN Code

This final model treats the ability of processing data variables. The unlock and
lock transitions of the car alarm system are augmented by a PIN code. If the
code is entered correctly, the system acknowledges it with a new ack-output,
and continues as before. If it was entered incorrectly, the system will start the
alarms, after a nack- output. This model only uses one clock, whereas five clocks
were used in the original car alarm system.



Table 3. Computation time for the different conformance checks on the deterministic
version of the car alarm system, augmented by a PIN code.

Depth Bounded Model Checking Symbolic Execution

Mean Median Max Min Mean Median Max Min

8 1.46s 0.28s 59.41s 0.12s 0.07s 0.05s 0.82s ∼ 0s
12 4.12s 0.35s 35.41s 0.13s 0.24s 0.05s 3.67s ∼ 0s

The PIN code did not have any negative influence on both approaches, as
illustrated in Table 3. For the symbolic execution, the mean conformance check
time was even reduced. This was most likely caused by the fact that only one
clock was used in this model. Furthermore, there were several more mutants,
most of which were non-equivalent.

Altogether, the bounded model checking was applied to 1, 702 mutants and
needed 41.4 minutes on depth 8 and 116.8 minutes on depth 12. The symbolic
execution was again faster, needing 143.0 (depth 8) and 460.8 (depth 12) seconds
for 1, 918 mutants. For the reported numbers, we restricted the PIN code to three
digits. However, we also applied the experiments with higher values (four and
five digits), without any negative consequences.

4.4 Lessons Learned

During the experiments, we found several model elements that influence the
presented approaches in different ways:

1. The number of clocks has a big influence on the runtime of the symbolic
execution approach. Adding clock variables slows the check down, whereas
merging two independent clocks reduces the runtime noticeably. In contrast,
for the bounded model checking, the number of clocks does not have a sig-
nificant influence on the runtime.

2. Non-determinism is an obstacle for conformance checking. For the bounded
model checking, where determination has to be done beforehand, this leads
to a state-space explosion and the complete model even became infeasible.
The symbolic execution, however, only experienced a reduction in perfor-
mance for some problematic mutants such as the two mutants which had to
be excluded from the experiments. Nevertheless, it was still able to process
the remaining mutants in reasonable time, though it should be noted that the
maximum runtime increased from about 40 seconds in the deterministic case
to about six minutes. This can be attributed to the fact that multiple sym-
bolic states can be reached by executing observable traces if non-determinism
is involved, which in turn increases the complexity for satisfiability checking
of the non-conformance condition.

3. Statistical outliers with respect to runtime are more frequent and more
extreme in symbolic execution, than on bounded model checking. In bounded
model checking, the processing time of different equivalent mutants is usu-
ally the same. For symbolic execution, some mutants are harder to check



than others. Usually, these are equivalent mutants, which contain mutations
that are executed early during the search for conformance violations, while
mutations that are executed at higher depths generally cause a much lower
performance penalty. This is due to the fact, that in the latter situation,
optimisations based on syntactic mutation analysis have a larger impact.

5 Related Work

Several time extensions for action systems have already been proposed: Fidge and
Wellings [15] proposed timed action systems, assuming time-consuming actions
and discrete time. Westerlund and Plosila [29] proposed action systems based
on continuous time, where each action system contains a clock to measure the
time since start of the system. Again, time is considered to be consumed by
actions, and may not pass between them. Wabenhorst [27] proposes a formalism
combining time-consuming actions and an additional wait action executed if
none of the other actions are enabled. In contrast to these proposals, we consider
actions that take zero time, followed by delays. This keeps our definition of timed
action systems very close to timed automata.

Kurki-Suonio [20] proposed a time extension to action systems, using, equal
to our approach, zero time actions, but using only one global variable to track
time. Each action has a parameter specifying its time of execution. They can
only be executed if the global time is smaller or equal to their time of execution.
If an action is chosen, it raises the global time to its time of execution. Contrary
to this approach, we use invariants instead of deadlines for limiting time progress
and we support multiple clocks, allowing for more complex time constraints.

We also encoded the language inclusion problem within UPPAAL [21], by
adding a trap-property to the product of the specification and a mutant. First
experiments showed that UPPAAL is very fast in detecting non-conformance in
the deterministic case. In the non-deterministic case, the encoding we used suf-
fered from the same problem as the bounded-model checking: it lead to spurious
counter examples. Adding a PIN code with a range of 0−500 to the determinis-
tic model already slowed the conformance check down and expanding it to 5000
made the whole approach infeasible.

Wang et al. [28] presented a zone-based language inclusion check for timed
automata. It seems to be faster then ours, however it does not support silent
transitions, and only terminates for determinizable classes of timed automata.

6 Conclusion

We have introduced timed action systems in a fashion as close to timed automata
as possible. We showed how to translate timed automata into timed action sys-
tems and defined a symbolic trace semantics for them. Using this semantics,
we applied a symbolic conformance check based on the stioco conformance re-
lation. We then compared bounded model checking and symbolic execution in
the context of test-case generation, applied to different models of a car alarm



system. The results showed that symbolic execution was able to handle non-
determinism very well, and that data variables did have no negative influence
on both approaches.
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