
Towards Integrating Statistical Model Checking into Property-Based Testing

Bernhard K. Aichernig and Richard Schumi
Institute of Software Technology, Graz University of Technology, Austria

{aichernig,rschumi}@ist.tugraz.at

Abstract—In recent years statistical model checking (SMC)
became increasingly popular, mainly because it does not suffer
from one of the major problems that limits traditional model
checking, the so called state-space-explosion problem. SMC
solves this problem by simulating a stochastic model for finitely
many executions. There exist a number of SMC tools, but they
require the user to learn a specific modelling language and a
particular (temporal) logic to express properties. In this paper
we propose a more flexible application of SMC, where both
the model and the properties can be defined in a programming
language. The technique builds upon the well-known property-
based testing approach. We use the programming language C#
and its associated tool FsCheck to demonstrate our approach.
A stochastic counter serves as illustrating example.

1. Introduction

Statistical model checking (SMC) is an efficient method
to test certain properties of stochastic models. These prop-
erties are usually defined in temporal logics, like linear
temporal logic (LTL). SMC can be used to answer both
qualitative and quantitative questions about these properties
by analysing executions of a stochastic model to measure
how often the properties are satisfied. A number of tools
exist that perform SMC for different kinds of models. For
example, UPPAAL-SMC checks priced timed automata [5]
or PLASMA-lab supports a number of different modelling
languages, like the Reactive Module Language or Matlab
Simulink [4]. However, the existing SMC tools are not as
flexible as some situations or users may require. They are
limited by the modelling language and the properties are
limited by the used logics. Therefore, we propose a new
SMC approach that builds on property-based testing (PBT).

PBT is a testing technique that tries to falsify a given
property by generating random input data and checking the
expected behaviour [6]. PBT is very flexible in the sense
that properties can range from simple algebraic equations to
complex state machine models.

For our SMC approach we introduce new SMC properties
that take classical PBT properties as input and check them
with an SMC algorithm. Our SMC properties can be applied
to both, algebraic and state machine properties, that can
generate command sequences and compare a system-under-
test (SUT) to a model.

Our approach supports conventional testing of an SUT
with stochastic failures and classical SMC by simulating

stochastic models. Conventional testing is realised by utilising
state machine properties and comparing faulty systems with
a correct model repeatedly by executing these state machine
properties within our SMC properties. Classical SMC can
be done by utilizing the model as observer automaton and
simulating the stochastic model as SUT.

PBT provides the tester with generators that enable the
generation of test data with certain probability distributions.
For example, it is possible to choose between multiple
transitions by assigning weights to each of them, or like
in UPPAAL-SMC, one may apply a distribution to define
the dwell time in certain states. The default behaviour
for checking PBT state machines is to do random walks
through the model by generating (input) command sequences.
The generation of these sequences can be controlled with
generators. SMC needs a discrete-event simulation, which can
be realised via the random walks in PBT. Hence, PBT has a
number of features that are helpful to implement a statistical
model checker. For the demonstration of our approach we use
the PBT tool FsCheck [1] and C# as programming language.

Related Work and Contribution. SMC was applied
in several case studies and a number of tools exist that
implement a variety of SMC algorithms. Simple algorithms
like Monte Carlo simulation, are already supported by
existing PBT tools. For example, with ScalaCheck [16] the
required number of samples can be specified and it can
report the number of failing samples. This enables a Monte
Carlo simulation. In contrast, the focus of our approach is
on hypothesis testing, but for demonstration we also show a
Monte Carlo method, because it is a common SMC algorithm.

UPPAAL-SMC is a tool for checking real-time proper-
ties [5]. It supports SMC for priced timed automata, which
can have weights on transitions and probability distributions
for the dwell time in states. It supports hypothesis testing, and
probability comparison and estimation by applying Wald’s
sequential probability ratio test (SPRT) [21] and the Chernoff-
Hoeffding bound [9].

The probabilistic model checker PRISM was also ex-
tended with SMC functionality [13]. Similar to UPPAAL-
SMC it supports priced timed automata, but also discrete- and
continuous-time Markov chains, Markov decision processes
and probabilistic automata. It is also able to perform the
same algorithms as UPPAAL-SMC, i.e. the SPRT and the
Chernoff-Hoeffding bound.

VESTA is another SMC tool that supports hypothesis
testing of properties in probabilistic computation tree logic
(PCTL) and continuous stochastic logic (CSL) [19]. VESTA

uses a language, which is related to PRISM, in order to
specify discrete-time and continuous time Markov chains.
Furthermore, the tool includes an interface to describe
models in probabilistic rewrite theories with the algebraic
specification language PMAUDE. AlTurki and Meseguer
[2] presented an extension of VESTA called PVESTA. This
extension includes parallel algorithms for SMC and client-
server support for VESTA.

Another statistical model checker called Ymer was
presented by Younes [22]. It is similar to PVESTA and
supports properties in PCTL and CSL and uses the SPRT.
For modelling it uses an extension of the PRISM language,
which allows the definition of time-homogeneous generalised
semi-Markov processes.

The most similar to our work is from Jegourel et al. [11]
and Boyer et al. [4]. First, they developed the SMC platform
PLASMA, which was later replaced by the PLASMA-lab
library. The library can perform SMC for multiple modelling
languages. For example, it supports the PRISM language and
biological languages, it has plugins for Matlab, SystemC and
further plugins can be implemented for other modelling
languages. This is a nice feature, because it allows the
creation of a custom statistical model checker. However,
in order to write a plugin for PLASMA-lab, a user has to be
familiar with the architecture of the library. The library uses
bounded linear temporal logic (BLTL) for the definition of
properties and as SMC algorithms it supports simple Monte
Carlo, Monte Carlo with Chernoff-Hoeffding bound and
SPRT. Furthermore, Legay et al. [15] presented an algorithm
for change detection called cumulative sum, which was also
added to the library.

Existing SMC tools often have a rather restricted mod-
elling language. In order to reduce the effort in modelling and
specification an additional layer of abstraction, i.e. "syntactic
sugar", can be added. For example, David et al. presented a
simulation method for biological systems for UPPAAL-SMC
by translating these systems to timed automata [7]. Another
approach that enables a high-level specification of Systems
of Systems was presented by Arnold et al. [3]. They show
how a contract language can be used to define properties,
which they translate to BLTL formulas for PLASMA-lab. In
contrast, we do not introduce a new language for the model
or property definition and hence do not need translators. With
C# we utilize an existing high level programming language
that is familiar to many developers in the industry. We show
that the models and the properties to be checked can be
easily defined in an object-oriented programming language.
No new notation or (temporal) logic needs to be learned.

Another advantage are the powerful generators, which
are the major ingredients of PBT. These generators can be
freely combined and are especially useful for applications,
which require a large amount of complex input data, like in-
formation systems. Additionally, they support the generation
of data with certain probability distributions, which is useful
for stochastic models.

To the best of our knowledge we could not find any
work that combines SMC and PBT except that the PBT tools
can report the number of passed and failed test-cases which

can be seen as a Monte Carlo simulation. Consequently,
the contributions of this paper are the following. The main
contribution is a new SMC approach that uses the modelling
notations from PBT and checks PBT properties instead
of logical formulas that are used in conventional SMC
approaches. It can also be seen as a novel extension of PBT
with SMC functionality providing testers who are already
familiar with a PBT tool the option to analyse the stochastic
properties of their SUT. Our approach allows the assessment
of stochastic failures of an SUT by a comparison with an ideal
model. Moreover, it supports classical SMC by performing
simulations with state machine properties and evaluating
temporal properties as observer automata.

Structure. First, Section 2 will explain the basics of
SMC, PBT and FsCheck. Next, in Section 3 we demonstrate
how SMC methods can be applied to a small example of a
stochastic counter with faulty behaviour. Then, in Section 4
we present details about the implementation of our approach.
Finally, we draw our conclusions in Section 5.

2. Background

2.1. Statistical Model Checking

SMC is a testing method that evaluates certain properties
of a stochastic model. These properties are usually defined
with (temporal) logics, like BLTL, and they can answer both
quantitative and qualitative questions. For example questions,
like what is the probability that the model satisfies a property
or is the probability that the model satisfies a property greater
than or below a certain threshold? In order to answer these
kinds of questions, a statistical model checker produces
samples in the form of random walks on the stochastic model
and checks whether the property holds for these samples.
Various SMC algorithms are applied in order to compute
the total number of samples needed to find an answer for
a specific question or to compute a stopping criterion. This
criterion determines when we can stop sampling because we
have found an answer with a required certainty [14].

We show two algorithms in order to illustrate our
approach for both quantitative and qualitative questions:

Simple Monte Carlo Simulation. This is the simplest
SMC algorithm. It answers quantitative questions and works
as follows. First, a fixed sample number and a property is
specified by the user. Then, the statistical model checker
simply generates the specified number of samples and counts
for how many of them the property holds. Finally, the number
of samples that fulfil the property divided by the total number
of samples is used to estimate the probability that the model
satisfies the property [4].

Sequential Probability Ratio Test (SPRT). This
sequential method [21] is a form of hypothesis testing,
which can be used to answer qualitative questions. Given
a random variable X with a probability density function
f(x, θ), we want to decide, whether a null hypothesis
H0 : θ = θ0 or an alternative hypothesis H1 : θ = θ1
is true for desired type I and type II errors (α and β).

In order to make the decision, we start sampling and
calculate the log likelihood ratio after each observation of xi:

log Λm = log
pm1
pm0

= log

m∏
i=1

f(xi, θ1)

m∏
i=1

f(xi, θ0)
=

m∑
i=1

log
f(xi, θ1)

f(xi, θ0)

We continue sampling as long as log β
1−α < log Λm <

log 1−β
α . H1 is accepted when log Λm ≥ log 1−β

α and H0

when log Λm ≤ log β
1−α [8].

2.2. Property-Based Testing

Property-based testing (PBT) is a random testing tech-
nique that evaluates a function or a system by checking a
given property. A property is a high-level specification of
behaviour that should hold for a range of data points. For
example, a property might state that a function should have a
certain expected behaviour. When the function runs through
as expected, then the property passed, otherwise a counter
example is returned. Simple properties can be expressed
as predicates, i.e. functions with Boolean return values that
should be true when the property is fulfilled. These functions
should work for any input values, hence a high number of
random inputs are generated for the parameters. Another
important aspect of PBT is shrinking, which is used to find
a similar simpler counterexample, when a property fails. In
order to shrink a counterexample, a PBT tool searches for
smaller failing counterexamples. The search method can be
specified individually for different data types [17], [18], [10].
A simple example of an algebraic property is that the reverse
of the reverse of a list must be equal to the original list:

∀xs ∈ Lists[T] : reverse(reverse(xs)) = xs

A PBT tool will generate a series of random lists xs, execute
the reverse function and evaluate the property.

PBT can also be applied to models in the form of
extended finite state machines (EFSMs) [12]. An EFSM
can formally be described as a 6-tuple (S, s0, V, I, O, T). S
is a finite set of states, s0 ∈ S is an initial state, V is a
finite set of variables, I is a finite set of inputs, O is a finite
set of outputs, T is a finite set of transitions, t ∈ T can be
described as a 5-tuple (ss, i, g, op, st), ss is the source state,
i is an input, g is a guard, op is a sequence of output and
assignment operations, st is the target state [12].

In order to use such an EFSM for PBT the permitted
transition sequences have to be defined with preconditions
and also the effect of each transition has to be defined with
postconditions. Pre-, postconditions and the execution seman-
tics of transitions are encapsulated in so-called commands
Cmds . A property of an EFSM is that for each permitted path
in the model, the postcondition of each transition, respectively
command of the path must hold. In order to check this
property a PBT tool produces random transition sequences
and checks the postconditions after each transition. Given
two functions to execute the model and the actual SUT

cmd .runModel , cmd .runActual : S × I → S ×O

a property of an EFSM can be specified via a pre- and a
postcondition as follows:

∀s ∈ S, i ∈ I, cmd ∈ Cmds :

cmd .pre(i, s) =⇒ cmd .post(cmd .runActual(i, s),

cmd.runModel(i, s))

The Boolean function cmd.pre is the precondition. It defines
the valid inputs and states of a command. The post condition
cmd.post relates the new states and the outputs of the SUT
and the model after the execution of the command.

PBT constitutes a flexible and scalable model-based
testing technique, because it is random testing and it has been
shown that it generates a large number of tests in reasonable
time [20]. The first PBT tool was QuickCheck [6] for Haskell.
Since then, it has been ported to many other programming
languages, e.g., ScalaCheck [16] and Hypothesis1 for Python.
Our approach is shown for FsCheck.

2.3. FsCheck

FsCheck is a PBT tool for .NET based on QuickCheck
and influenced by ScalaCheck. Like ScalaCheck it extends
the basic QuickCheck functionality with support for state-
based models. With FsCheck, properties can be defined
both in a functional programming style with F# and in
an object-oriented style with C#. Similar to QuickCheck
it has default generators for basic data types and more
complex ones can be defined via composition. Furthermore,
FsCheck has extensions for unit testing, which support a
convenient definition and execution of properties like for
normal unit tests. We have successfully applied FsCheck for
the automated testing of web services in industry [1].

FsCheck can evaluate if an SUT conforms to a model
by generating command sequences and comparing the state
of the SUT with the expected state of the model. In order to
perform such an evaluation, FsCheck needs a state machine
specification that it converts into a state machine property.
This property is able to perform the generation of command
sequences and the comparison of the SUT with the model. For
its definition we need to implement an interface comprising
a model, an SUT, an initial state, a command generator,
and classes for the commands. More details about these
specifications were shown in our previous work [1].

3. Example

In this section we demonstrate our approach with an
example of a counter, which is commonly used in the PBT
community to demonstrate model-based testing. Figure 1
shows the state machine of our counter implementation. It
can be seen that we added stochastic faulty behaviour to
the increment function (Inc) of the counter. This behaviour
was achieved by adding a probabilistic choice: the function
can either do a normal increment (99%) or do nothing (1%).
The decrement function (Dec) works as usual.

1. https://pypi.python.org/pypi/hypothesis

https://pypi.python.org/pypi/hypothesis

0start 1 2 ...Inc

.01 .99

Inc

.01 .99

Inc

.01 .99

Dec Dec Dec

Figure 1. Stochastic model example of a counter from the PBT community.

Listing 1 shows the implementation of the counter with
the stochastic behaviour. Internally the counter uses an
integer to store the state. We utilise a System.Random object,
which is a pseudo-random number generator from the .NET
framework, to implement the stochastic behaviour. In the
Inc function we call random.Next(100), which gives us
numbers from 0 to 99. This number is used to produce value
0 with probability 0.01 and value 1 with probability 0.99.

The main property we wanted to check for this example
is how likely it is that the stochastic counter behaves like
a normal counter. In order to check such properties we
implemented new properties that are based on the properties
from PBT with the difference that they perform an SMC algo-
rithm instead of the normal property checks. Our new SMC
properties take a normal PBT property and parameters for an
SMC algorithm as input and apply the algorithm on the input
property. More details about the implementation of these
properties are discussed in Section 4. The following listing
shows an example property for Monte Carlo simulation:
P r o p e r t y p = new CounterMachine () . T o P r o p e r t y () ;
new M o n t e C a r l o P r o p e r t y (p , c o n f i g , 1 0 0 0) . QuickCheck () ;

It can be seen that we first define an FsCheck state machine
property and after that we check it by performing a simple
Monte Carlo simulation with 1000 runs. This is done by
defining a MonteCarloProperty that takes the state machine
property and configuration parameters as input and executing
the QuickCheck method. The output of our MonteCarloProp-
erty was that the property holds in 98.7% of the cases when
we consider a sample length of two commands.

Another example property for the SPRT is shown here:
new SPRTProper ty (p , c o n f i g , 0 . 9 5 , 0 . 9 , 0 . 0 1 , 0 . 0 1)

Four arguments are needed for the SPRT method: the
probability for the null hypothesis H0, the probability for
the alternative hypothesis H1 and the type I and type II error
parameters. The example shows an SPRTProperty, which can
check if the probability that the stochastic counter works like
a normal counter is closer to 0.95 or 0.9. When we check
this property for samples of length 10, we obtain the result
that the null hypothesis H0 (closer to 0.95) was accepted.

The concrete testing of properties that we want to check
happens in the state machine specification of FsCheck. A
state machine property of FsCheck can be evaluated within

1 p u b l i c c l a s s Coun te r {
2 p r i v a t e i n t n ; System . Random random ;
3 p u b l i c Coun te r (System . Random r) { t h i s . random = r ; }
4 p u b l i c vo id I n c () {
5 n += random . Next (1 0 0) > 0 ? 1 : 0 ;
6 }
7 p u b l i c vo id Dec () { n−−; }
8 p u b l i c i n t Get () { re turn n ; } }

Listing 1. Stochastic counter implementation for FsCheck.

0 5 10 15 20 25 30

85

90

95

100

sample length

pr
ob

ab
ili

ty
[%

]

Figure 2. Simulation results for the property: how likely is it that the
stochastic counter behaves like a normal counter?

our SMC properties. We use our stochastic counter as SUT
and a regular counter as model and check if we can find
a difference for a generated command sequence, which
represents a sample. This approach is useful if an SUT
has failures that occur irregularly. With our introduced
properties it is possible to compute the probability of certain
failures. Moreover, they enable the assessment of hypotheses,
like if a certain type of error is more likely than another.
This approach might also be suitable for reliability and
performance testing, because the required criteria can be
easily specified in the model and checked when the SUT is
executed. For example, web applications, where performance
(response time) is an important issue when the number of
users increases, might provide an interesting case study for
future work. This setup of checking a stochastic SUT against
a specification EFSM could also be used for classical SMC:
the temporal properties would be expressed as observer-
automata specifications that are checked against the stochastic
models interpreted as SUT.

Figure 2 shows the results of the evaluation of the counter
example. We performed a Monte Carlo simulation with
100,000 samples for each data point in order to compute
the probability that the stochastic counter behaves like a
normal counter. It can be seen that the probability decreases
with increasing sample length. This behaviour met our
expectations because with a larger sample length, respectively
longer random walks on the model, it is more likely that we
observe a faulty increment that fails incrementing.

4. Implementation

In this section we illustrate how we implemented our
SMC approach by introducing our own new SMC prop-
erties that are based on PBT properties. Furthermore, we
want to highlight the advantages, like flexibility and user
convenience.

We propose new properties for each SMC algorithm. The
difference to normal PBT properties is that they perform an
SMC algorithm instead of a normal test that only checks if a
property holds or fails. We want to know the probability that
the property holds, or we want to assess if the probability
is closer to a null hypothesis or an alternative hypothesis.
Our new SMC properties take a normal PBT property, a
configuration object for the check of the PBT property and
parameters for an SMC algorithm as constructor arguments.
They provide a function QuickCheck that performs the SMC
algorithm by simulating the input PBT property, which is
used to generate samples and also to check them. The SMC

1 p u b l i c c l a s s M o n t e C a r l o P r o p e r t y {
2 p r o t e c t e d P r o p e r t y p r o p e r t y ; p r o t e c t e d Conf ig c o n f i g ; p r o t e c t e d i n t samples ;
3
4 p u b l i c M o n t e C a r l o P r o p e r t y (P r o p e r t y p , Conf ig c , i n t sample s) {
5 t h i s . p r o p e r t y = p ; t h i s . c o n f i g = c ; t h i s . s ample s = samples ;
6 }
7 p u b l i c vo id QuickCheck () {
8 i n t p a s s C n t = 0 ;
9 f o r (i n t i = 0 ; i < samples ; i ++){

10 t r y {
11 Check . One (c o n f i g , p r o p e r t y) ;
12 p a s s C n t ++;
13 } ca tch {}
14 }
15 Conso le . Wr i t e (" P r o p e r t y h o l d s " + ((double) p a s s C n t / s amples ∗100)+ "%\n ") ; } }

Listing 2. Implementation of a simple Monte Carlo simulation.
1 c l a s s SPRTProper ty {
2 P r o p e r t y p r o p e r t y ; Conf ig c o n f i g ; double p0 ; double p1 ; double l o g _ a ; double l og_b ;
3
4 p u b l i c SPRTProper ty (P r o p e r t y p , Conf ig c , double p0 , double p1 , double a lpha , double b e t a) {
5 t h i s . p r o p e r t y = p ; t h i s . c o n f i g = c ; t h i s . p0 = p0 ; t h i s . p1 = p1 ;
6 t h i s . l o g _ a = Math . Log (b e t a / (1 − a l p h a)) ;
7 t h i s . l og_b = Math . Log ((1 − b e t a) / a l p h a) ;
8 }
9 p u b l i c vo id QuickCheck () {

10 double s _ i = 0 ;
11 do{
12 bool s u c c e s s = f a l s e ;
13 t r y {
14 Check . One (c o n f i g , p r o p e r t y) ;
15 s u c c e s s = t rue ;
16 } ca tch {}
17 double r a t i o = s u c c e s s ? (p1 / p0) : ((1 − p1) / (1 − p0)) ;
18 s _ i = s _ i + Math . Log (r a t i o) ;
19 } whi le (l o g _ a < s _ i && s _ i < log_b) ;
20 i f (s _ i >= log_b) { Conso le . W r i t e L i n e ("H1 a c c e p t e d . ") ; }
21 e l s e i f (s _ i <= l o g _ a) { Conso le . W r i t e L i n e ("H0 a c c e p t e d . ") ; } } }

Listing 3. Implementation of hypothesis testing with an SPRTProperty.

properties for the different SMC algorithms have the same
structure, but require different parameters for the algorithms
and have different stopping criteria for the simulation.

Listing 2 shows the MonteCarloProperty class, which
can perform a simple Monte Carlo simulation. It can be seen
that the constructor takes a property, a configuration object
for checking the property and the total sample number for
the simulation (Line 4). The QuickCheck function (Line 7)
performs the actual simulation. First, we initialise a counter
for the number of passing samples. Then, we run a for-loop
that creates samples with the specified sample number. A
sample is generated by applying the Check .One method,
which takes the PBT property and a config object as input. A
config object contains FsCheck configurations like Boolean
flags to control the output/exception behaviour of properties
and the number of tests that should be performed. The
Check .One method also evaluates, if the property was
fulfilled. If it fails, an exception is thrown. Therefore, we
have put the method call inside a try-catch block (Lines 10–
13) and we only count a sample as passed, if the method
finishes successfully. After the desired number of samples
was evaluated the results are presented to the user.

An SPRTProperty which performs the SPRT method
is shown in Listing 3. This property can decide if a null
hypothesis specified with the parameter p0 or an alternative
hypothesis given with p1 will be accepted. In contrast
to the previous algorithm, we do not know the sample
number in the beginning. We have an indifference region,

in which we have not found a decision yet and where
we have to continue sampling. The thresholds for this
indifference region are calculated in the constructor with
the desired type I and type II error parameters alpha and
beta (Lines 6–7). Inside the QuickCheck method we perform
the simulation. A sample is checked in the same way as
in a MonteCarloProperty (Lines 13–16). For each sample
we calculate the log-likelihood ratio and sum it up with the
previous ratios (Lines 17–18). We stop when the sum is
outside the thresholds. Depending on which threshold was
met, either H0 or H1 is accepted.

The architecture of our introduced SMC properties makes
it easy to check all kinds of PBT properties. Although
our main focus is on stochastic models and state machine
properties, it is also possible to check the stochastic behaviour
of other kinds of properties. For example, one might want
to check properties of a stochastic function or a call to an
operation with stochastic failures. Our introduced properties
can easily be implemented in other PBT tools. As already
explained in Section 2.2, there exist various PBT tools for
different programming languages. It is not much effort to
implement our approach for other tools since the structure
is simple and works for other languages as well.

The definition of our stochastic models and properties in
a high level programming language provides some benefits
like flexibility. For example, the models can be easily
extended to include observer functionality like counting
certain incidents. Counters can then be evaluated within

the FsCheck specification in order to decide if a sample
fails. We looked at existing SMC approaches and noticed
that they are quite limited in some areas. For example,
when one wants to check models with different numbers of
instances or when instances should be created dynamically.
In a high-level programming language it is quite easy to
create a fixed number of instances via a loop or even
dynamically add instances during the execution of a model.
Furthermore, we noticed that often very long formulas are
required for the properties within the models of existing
SMC approaches, because the used notations often do not
support loop functionality.

It should be mentioned that we used a new experimental
version of the FsCheck state machine specification.2 This
version supports the generation of fixed length samples
and stop commands that enable a termination during the
command generation. These two features are important for
our implementation, because we have to ensure that our
generated samples are long enough and also that we can
stop, when we know the outcome of a sample.

5. Conclusion

We have demonstrated that statistical model checking
can be quite easily integrated into a property-based testing
framework. We have implemented two commonly used SMC
algorithms in the form of SMC properties and illustrated our
approach by applying it to a stochastic counter implementa-
tion. Furthermore, we highlight some benefits of our approach
in the modelling style. The elegance of our integration is
due to the fact that our new SMC properties take a classical
property to be checked as input parameter. This results in
a very flexible SMC approach where, e.g., state-machine
properties as well as algebraic properties can be checked.
This integration method enables the evaluation of faulty
implementations with stochastic failures, by comparing them
to a correct implementation, as well as the evaluation of
stochastic models with observer automata. For load- and
performance testing such an analysis is also a promising
option to check if certain non-functional requirements are
met by an SUT.

The fact that SMC algorithms can be represented as SMC
properties inside a PBT framework should make statistical
model checking accessible to test engineers already familiar
with PBT. We are in the process of evaluating this technique
by applying it typical case studies from the SMC literature.

Acknowledgment

The research leading to these results was funded by
the Austrian Research Promotion Agency (FFG), project
number 845582, Trust via cost function driven model based
test case generation for non-functional properties of systems
of systems (TRUCONF). The authors would like to thank
Florian Lorber, Silvio Marcovic, Martin Tappler and the
anonymous reviewers for their valuable comments.

2. https://fscheck.github.io/FsCheck/StatefulTestingNew.html

References

[1] B. K. Aichernig and R. Schumi, “Property-based testing with FsCheck
by deriving properties from business rule models,” in ICSTW. IEEE,
2016, pp. 219–228.

[2] M. AlTurki and J. Meseguer, “PVESTA: A parallel statistical model
checking and quantitative analysis tool,” in CALCO, ser. LNCS, vol.
6859. Springer, 2011, pp. 386–392.

[3] A. Arnold, B. Boyer, and A. Legay, “Contracts and behavioral patterns
for SoS: The EU IP DANSE approach,” in AiSoS, ser. EPTCS, vol.
133. Open Publishing Association, 2013, pp. 47–66.

[4] B. Boyer, K. Corre, A. Legay, and S. Sedwards, “PLASMA-lab: A
flexible, distributable statistical model checking library,” in QEST, ser.
LNCS, vol. 8054. Springer, 2013, pp. 160–164.

[5] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang, “UPPAAL-SMC: Statistical model checking
for priced timed automata,” in QAPL, ser. EPTCS, vol. 85. Open
Publishing Association, 2012, pp. 1–16.

[6] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of Haskell programs,” in ICFP. ACM, 2000, pp.
268–279.

[7] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen,
and S. Sedwards, “Statistical model checking for biological systems,”
International Journal on Software Tools for Technology Transfer,
vol. 17, no. 3, pp. 351–367, Jun. 2015.

[8] Z. Govindarajulu, Sequential statistics. World Scientific, 2004.

[9] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate
probabilistic model checking,” in VMCAI, ser. LNCS, vol. 2937.
Springer, 2004, pp. 73–84.

[10] J. Hughes, “QuickCheck testing for fun and profit,” in PADL, ser.
LNCS, vol. 4354. Springer, 2007, pp. 1–32.

[11] C. Jégourel, A. Legay, and S. Sedwards, “A platform for high
performance statistical model checking - PLASMA,” in TACAS, ser.
LNCS, vol. 7214. Springer, 2012, pp. 498–503.

[12] A. S. Kalaji, R. M. Hierons, and S. Swift, “Generating feasible
transition paths for testing from an extended finite state machine
(EFSM).” in ICST. IEEE, 2009, pp. 230–239.

[13] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” in CAV, ser. LNCS,
vol. 6806. Springer, 2011, pp. 585–591.

[14] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking:
An overview,” in RV, ser. LNCS, vol. 6418. Springer, 2010, pp.
122–135.

[15] A. Legay and L.-M. Traonouez, “Statistical model checking with
change detection,” Sep. 2015, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01242138

[16] R. Nilsson, ScalaCheck: The Definitive Guide, ser. IT Pro. Artima
Incorporated, 2014.

[17] M. Papadakis and K. Sagonas, “A PropEr integration of types and
function specifications with property-based testing,” in Erlang. ACM,
2011, pp. 39–50.

[18] C. Runciman, M. Naylor, and F. Lindblad, “SmallCheck and lazy
SmallCheck: Automatic exhaustive testing for small values,” in Haskell.
ACM, 2008, pp. 37–48.

[19] K. Sen, M. Viswanathan, and G. A. Agha, “VESTA: A statistical
model-checker and analyzer for probabilistic systems,” in QEST.
IEEE, 2005, pp. 251–252.

[20] Y. Wada and S. Kusakabe, “Performance evaluation of a testing
framework using QuickCheck and Hadoop,” Journal of Information
Processing, vol. 20, no. 2, pp. 340–346, 2012.

[21] A. Wald, Sequential analysis. Courier Corporation, 1973.

[22] H. L. S. Younes, “Ymer: A statistical model checker,” in CAV, ser.
LNCS, vol. 3576. Springer, 2005, pp. 429–433.

https://fscheck.github.io/FsCheck/StatefulTestingNew.html
https://hal.archives-ouvertes.fr/hal-01242138

