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Abstract—Previous work has demonstrated that property-
based testing (PBT) is a flexible random testing technique that
facilitates the generation of complex form data. For example,
it has been shown that PBT can be applied to web-service
applications that require various inputs for web-forms. We want
to exploit this data generation feature of PBT and combine
it with an external test-case generator that can generate test
cases via model-based mutation testing. PBT already supports
the generation of test cases from stateful models, but it is
limited, because it normally only considers the current state
during exploration of the model. We want to give the tester
more control on how to produce meaningful operation sequences
for test cases. By integrating an external test-case generator into
a PBT tool, we produce a smaller set of test cases that meet
certain coverage criteria. This also reduces the test execution
time. We demonstrate our approach with a simple example of
an external generator for regular expressions and perform an
industrial case study, where we integrate an existing model-based
mutation testing generator.

I. INTRODUCTION

Property-based testing (PBT) is a testing technique that tries
to falsify a given property by generating random input data
and verifying the expected behaviour [8]. It enables testing of
algebraic equations as well as complex state machine models.
For input generation it has a number of generators for common
data-types and also for creating random walks on models.
The major strength of PBT is its flexibility. New generators
for complex data objects can be easily created by combining
existing generators and also properties can be composed out
of sub-properties.

In this work we show how a PBT tool can be extended
in order to support other sources for the test-case generation
instead of the default random walks on the model. This
gives the tester more control on how to produce meaningful
operation sequences for the test cases. For example, it can be
applied to combine random testing with a mutation-based test-
case generation method, which results in a powerful testing
strategy [1]. By integrating an external test-case generator into
a PBT tool we can combine the dynamic test-data generation
feature of PBT with the ability to generate operation se-
quences, respectively test cases, according to various coverage
criteria. Although we only show our approach for a specific
external generator, it is also possible to reuse the structure
of our integration for all kinds of testing tools. Especially
model-based testing tools are particularly suitable, because

they generate operation sequences based on models that can
be combined with generated test data from a PBT tool.

We apply the PBT tool FsCheck in order to demonstrate
our approach. Figure 1 shows its process. In the first step we
translate XML business-rule files to input models for FsCheck,
that are in the form of Extended Finite State Machines
(EFSMs) [2]. As an alternative to directly using our EFSMs
within FsCheck, we can also further transform the models in
order to provide them to an external test-case generator. For
example, we applied the model-based mutation testing tool
MoMuT::UML [17] in our case study in order to generate
abstract test cases based on mutation coverage. This allows us
to generate smaller test suites that still cover important model
parts. An externally generated abstract test case can serve as
input for a state machine property within FsCheck, where it is
executed instead of performing a random walk on the model.
Additionally, we can enrich the operation sequences from the
external generator with test data generated from FsCheck.
The reason why we do not also apply the external generators
for the test data generation is that they are often limited
regarding the supported data types. Moreover, FsCheck is
more suitable for this task, because it has powerful generators
that can be combined very flexibly and thereby facilitate the
generation of complex test data like attributes for web-forms.
In order to execute externally generated abstract test cases
within FsCheck, we extend its state machine specification with
new functionality for external data sources.

A. Related Work and Contribution

PBT has gained a lot of attention over the last years
and a variety of approaches combine model-based testing in
combination with PBT. The most similar approaches to our
work are described in the following.

Hughes et al. [13] presented an approach that utilizes
QuickCheck to adapt random test-case generation in order
to avoid rediscovering the same type of bugs. In order to
avoid the generation of the same sequences multiple times, the
minimum counterexamples of already found bugs were stored.
The approach is similar in a way that it uses feedback from
the test sequences in order to optimize the test-case generation
process. The main difference to our approach is their focus on
a specific technique to adapt the test-case generation.

A technique to generate test sequences that cover business
rules was presented by Jensen et al. [14]. Business rules are
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Fig. 1. Overview of the steps for the integration of an external test-case generator.

translated into logical formulae and a constraint solver is used
to generate the test sequences. Their work is similar in a way
that test sequences are generated from business rules with the
help of a constraint solver. Our external test-case generator
MoMuT::UML also applies a constraint solver for test-case
generation. While their work can be interpreted as a variant
of model-based testing, they present their work in a business
rule language. Our technique focuses more on translating the
business rules into a model and providing more options for
the test sequence generation process.

The work of Vedder, Vinter, and Jonsson [23] combines
QuickCheck with a fault injection tool. The created testing
platform is used to run a quad-copter simulator to improve
the collision-avoidance mechanism. They inject faults into the
simulator and verify the property that copters do not collide.
Similar to our work, they inject faults in order to acquire test
sequences. In their work the model is not created automatically
and they focus more on how to use the knowledge of found
bugs in order to improve the collision-avoidance mechanism.
In comparison, this paper focuses more on automating the
approach and acquiring test sequences in a different manner,
rather than improving the SUT based on the injected faults.

An alternative to control the generation of operation se-
quences is to specify the frequency distribution for generators,
as, e.g., supported by Quviq QuickCheck [3]. Weights can be
assigned to generators in order to select certain operations with
a higher or lower probability. This method allows more control
over the distributions of operation sequences. However, with
our external generators we have even more control, e.g., we
can generate test cases that meet a certain coverage criterion.

A framework to test web-services with the PBT tool PropEr
for Erlang was presented by Lampropoulos and Sagonas [18].
They automatically read the WSDL specification of a web
service to invoke the operations of the web service with ran-
dom input. Similar to this work they used data types, but only
supported a few constraints for the data. They implemented
automated properties that are not satisfied in case the parsing
of the SOAP response encounters an error. In comparison to
our work they do not use state machines to build their models
and other properties have to be implemented by the user.

Francisco et al. [11] presented another similar approach.
The framework tests web services by automatically deriving
QuickCheck models from the web-service’s WSDL descrip-
tion and OCL semantic constraints. They show how to test
stateless and stateful web services by deriving respective
models. In comparison to this paper their generators do not
consider constraints for the data and they added the OCL
semantic constraints manually. They applied QuickCheck to

generate the test sequences but unlike in this paper, they did
not use other test sequence generation strategies.

To the best of our knowledge, we could not find any other
work that derives PBT models to automatically test a system
and decouples the test sequence generation process from the
PBT tool giving more control over the generation process.

In our previous work we showed how PBT can be applied
in a test-case generation process that uses XML business-rule
models in the form of EFSMs as input for PBT [2].

Building upon our previous work, we present the following
novel contributions. We demonstrate how an external test-case
generator can be integrated within a PBT tool by extending
state machine specifications so that they can execute operation
sequences from external sources together with generated test-
data. Another contribution is the comparison of the random
testing approach of a PBT tool with model-based mutation
testing. Furthermore, we present an industrial case study of a
web-service application in order to evaluate our approach.

B. Structure

The rest of the paper is structured as follows. First, Sec-
tion II explains the basics of PBT, FsCheck and the external
test-case generation tool that we applied in our case study.
Next, in Section III we describe details about the structure
and implementation of our approach. Then, in Section IV
we show a small example of external sequence generation
with regular expressions. Section V presents an industrial case
study. Finally, we draw our conclusions in Section VI.

II. BACKGROUND

A. Property-based Testing

Property-based testing (PBT) is a random test-case gener-
ation technique that tries to evaluate a given property. In its
original form, the test-case generation is driven by algebraic
properties that specify the expected behaviour of functions
under test. The test-case generator produces a high number of
random input values for each function parameter and checks if
the properties are satisfied. A simple example of an algebraic
property is that the reverse of the reverse of a list must equal
the original list:

∀xs ∈ Lists[T ] : reverse(reverse(xs)) = xs

A PBT tool will generate a series of random lists xs, execute
the reverse function and evaluate the property. If a property
fails, the responsible test case is returned as a counterexample.
In order to facilitate debugging PBT searches for a simpler
counterexample. This process is known as shrinking. The
search for simpler counterexamples can be specified individ-
ually for different data types [2], [12], [20], [21].



Today, most PBT tools also support model-based testing
with models in the form of extended finite state machines
(EFSMs) [16]. An EFSM can formally be described as a 6-
tuple (S, s0, V, I, O, T ): S is a finite set of states, s0 ∈ S is
an initial state, V is a finite set of variables, I is a finite
set of inputs, O is a finite set of outputs, T is a finite
set of transitions, t ∈ T can be described as a 5-tuple
(ss, i, g, op, st), ss is the source state, i is an input, g is a
guard, op is a sequence of output and assignment operations,
st is the target state [16].

In order to use such an EFSM for PBT the permitted
transition sequences have to be defined with preconditions and
also the effect of each transition has to be defined via post-
conditions. Preconditions, postconditions and the execution se-
mantics of transition are encapsulated in so-called commands
Cmds, also called operations. The property of an EFSM is
that for each permitted path on the model, the postcondition
of each transition respectively command of the path must hold.
In order to verify this property a PBT tool produces random
transition sequences and checks the postconditions after each
transition. Formally a property for an EFSM can be defined
as follows.

∀s ∈ S, i ∈ I, cmd ∈ Cmds :

cmd.pre(i, s) =⇒ cmd.post(cmd.runActual(i, s),

cmd.runModel(i, s))

cmd.runActual : S × I → S ×O

cmd.runModel : S × I → S ×O

The Boolean function cmd.pre is the precondition. It defines
the valid inputs and states of a command. The postcondition
cmd.post relates the new states and the outputs of the SUT
and the model after the execution of the command on both the
SUT cmd.runActual and the model cmd.runModel. Note
that sometimes the postcondition and the runActual function
can be fused together. For example, in this work we used an
experimental version of a PBT tool, where this was the case.
Also commands were called operations in this version. Hence,
we use this term in the following.

PBT constitutes a flexible and scalable model-based testing
technique, because it is random testing. It has been shown that
it generates a large number of tests in reasonable time [24].

The first PBT tool was QuickCheck [8] for Haskell. There
are many other tools that are based on QuickCheck, e.g.,
ScalaCheck [19] or Hypothesis1 for Python. In our approach
we work with FsCheck, because the testing framework of our
industrial partner is based on C#.

B. FsCheck

FsCheck is a PBT tool for .NET based on QuickCheck and
influenced by ScalaCheck. Like ScalaCheck it extends the
basic QuickCheck functionality with support for state-based
models. A small limitation of the current stable version is that
it does not consider preconditions when shrinking command

1https://pypi.python.org/pypi/hypothesis

sequences. This feature is included in an experimental release.2

Therefore, we worked with this experimental release in this
paper. With FsCheck, properties can be defined both in a func-
tional programming style with F# and object-oriented with C#.
Similar to QuickCheck it has default generators for basic data
types and more complex ones can be defined via composition.
It has an Arbitrary instance that groups together a shrinker
and a generator for a custom data type. This enables the
specification of properties that include variables of custom data
types. New Arbitrary instances can be dynamically registered
at run time and then the new data type can be directly used
for input data generation [2].

C. MoMuT

MoMuT (MOdel-based MUtation Testing) is a tool fam-
ily based on mutation testing. Instead of programs, abstract
models of the SUT are mutated. Mutations are performed via
mutation operators which inject small faults into abstract mod-
els. The objective of MoMuT is to generate a small number of
strong test cases that cover these faults. MoMuT::UML [17]
is a mutation testing tool which uses UML state machines as
input. The models are transformed into object oriented action
systems (OOAS) and then converted into labelled transition
systems (LTS). The test case generator tries to find differences
between the original and mutated model by performing a re-
finement check and if non-refinement is reached, then a check
for input output conformance (ioco) is executed [15]. If non-
conformance is detected, a test case is generated that shows
the difference and we can denote the mutant as killed. A trace
showing non-conformance represents such a test case. Model-
based mutation testing is a computationally expensive strategy.
Numerous mutants have to be analysed and generating test
cases involves a conformance check between two models [1].

For the test case generation, two different back ends can
be used. The ”enumerative back end”, developed in the MO-
GENTES3 project and the ”symbolic back end”, developed
within the TRUFAL4 project. The latter showed better per-
formance for our models. Therefore, the symbolic back end
was used. Both back ends support the following three test
case generation strategies: random testing with random walks,
mutation testing and a combination of both. The symbolic
back end uses Microsoft’s SMT Solver Z3 [9] and is written
in SICStus Prolog [7]. MoMuT::UML produces abstract test
cases in the Aldebaran format, which is a file format for
representing labelled transition systems [10].

In this paper, business rule models are translated to OOAS
models instead of UML models. Therefore, the UML mutator
and the translation step from UML to OOAS of the tool are
not used. Action systems (AS) were first introduced by Back
and Kurki-Suonio [4] and used as a modelling formalism for
distributed systems. AS start at an initial state. The state is
changed by executing actions on the system. One action is
chosen at each step in a non-deterministic manner. Actions

2https://fscheck.github.io/FsCheck/StatefulTestingNew.html
3http://www.mogentes.eu
4https://trufal.wordpress.com
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can only be chosen if they are enabled. They are enabled if
their guard is satisfied in the current state. If there is no action
in the set of enabled ones, the execution terminates. The object
oriented action systems (OOAS) language is an object-oriented
extension which is based on the work of Bonsangue, Kok, and
Sere [6]. Details of the concrete syntax of these AS are omitted
due to space limitations. For a more detailed syntax definition
of the OOAS language we refer to the work of Tiran [22].

III. ARCHITECTURE AND IMPLEMENTATION

In this section we present the architecture of our integration
of an external test-case generator into FsCheck. The idea
behind the presented approach is to use an external generator
to create a sequence of operations to form a test case. A PBT
tool like FsCheck uses a function Next to generate the next
operation. This function focuses on one operation at a time
and it only relies on the current state of the model. However,
there is other data that can be utilized to generate a sequence
of operations, e.g., information about covered model parts.
Before executing any operation on the model, we can generate
sequences from an external source. This allows us to generate
operations that do not only rely on the current state. It is
possible to include the path up to the operation and even
after the operation itself, which enables a better control of
the generation of operation sequences since this process is
decoupled from the PBT tool. For example, when the test cost
of execution is high, then an external generator can generate
a smaller test suite that still checks all relevant model parts,
e.g., by ensuring transition coverage.

The simplest use of an external generator could be to use a
sequence from a PBT tool and save it externally. This sequence
can then be reused as an external source and supplied to the
PBT tool via the interface. This means we are effectively
replaying the previously run test case. This use case was
discovered as a by-product of this work since it was very useful
to try to reproduce errors or to create very specific test cases.
FsCheck already supplies some sort of replay functionality.
It is possible to set the seed of the random generator and
make the test sequence generation deterministic. That way it
is possible to replay a certain test case. However, as soon as
the model changes or multiple test cases need to be replayed,
or just some parts of the sequence should be replayed, this
approach does not work any more. That is were the replay
functionality via an external generator showed its usefulness.
It proved to be effective for testing if any changes on the test
framework were implemented to show if it still identifies the
SUT correctly. Short test cases were written in order to target
mentioned changes. This usually resulted in finding mistakes
earlier as compared to waiting until the generators produce a
sequence that operates in the area that was changed.

In order to use an external sequence in FsCheck, an interface
to the tool had to be built. Note that here, interface does not
refer to the programming structure used in object-oriented
languages. Here, interface refers to a shared boundary be-
tween two components, namely the PBT tool and the external
generator, to enable an information exchange between both

components. The PBT tool can pass model information to the
external generator and in return it receives generated test cases.
A test case consists of a sequence of operations. An operation
will need access to a model and an SUT. It is executed on
the SUT with the state prior to the operation. The resulting
SUT state is then compared to the expected post state from the
model. This is the property of the operation. Data is needed in
order to perform an operation. This data is supplied by using
generators for the required data types to generate values. In
order to not rely solely on the generators, data will also be
included from external generators. That means that external
generators have to supply a set of data for each operation.

In traditional PBT, the length of a test case is decided by
the PBT tool. Then, based on the current state an operation is
generated by choosing the type of operation and the operation
data (attributes) with generators. In our integration approach
the external generator is responsible for the length of the
sequence. That means that in order to use our approach it must
be possible to control the length of an operation sequence.
The operation type is also defined by the external generator.
The data needed for an operation can be supplied by either
the external generator, by a regular PBT generator or by a
combination of both. Some external generator might not be
suitable to generate complex operation data, which is needed
for the execution of the operation. In this case it is useful that
PBT generators can be used for the operation data and the
external generator only needs to generate the operation types
of a test case. In our case study in Section V this was the case.

The interface for the external generator was implemented by
extending the abstract class Machine of FsCheck with new
functionality. We derived from the Machine class in order
to create an ExternalMachine class, which implements the
new functionality. Figure 2 shows the new components and
how they are wired together with the regular FsCheck parts.
In FsCheck the Machine uses the model and the SUT and
executes the operations on them. FsCheck uses a Runner ,
which is responsible for checking the machine and reporting
the test results. The machine has to be transformed into a
property to be checked. This functionality is already provided
by FsCheck and most parts are hidden from the user. The
ExternalMachine is responsible for transforming the external
test arguments into operations and forwarding the SUT and
model to the machine. An external generator has to be linked
to the ExternalMachine to provide the test case arguments.
There are two types of arguments to create test sequences,
SetupArg and OperationArg . They will be explained later in
this section. Usually the external generator will also require
information from the SUT or the model. This is not shown
in the diagram since it is not necessarily required. Note that
the ExternalMachine is abstract, this means the user will
have to implement how the arguments are used to generate
test sequences. In the following the implementation of the
ExternalMachine and how the arguments can be used is
explained. The implementation is shown in Listing 1.

The first notable extension are the two new generic types:
SetupArg and OperationArg (Line 1). They define the ar-
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gument types that are used in the Setup and Next functions
to generate the initial state and the operations (Lines 14 &
21). A queue (Line 2) holds the external data that is used to
generate its operation sequences. The data in the queues is
supplied by external generators. Each element in this queue is
an object of the MachineRunArguments class and represents
a single test case. A MachineRunArguments object contains
a setup argument SetupArg and a queue OperationArg , which
contains the operation sequence. Simplified, the interface uses
a queue of queues, where the outer queue represents the set of
externally generated test cases and the inner queue represents
the sequence of operations of each test case.

During a regular FsCheck test-case generation/run, setup
is called in the beginning to create the initial state of
the model and then a number of operations is generated
by calling Next each time. The ExternalMachine uses
MachineRunArguments to supply external information to the
Setup and Next functions. These arguments can be used to
supply the whole data required for an operation or just some
information for generation process of operations.

In Line 7–13 the Setup function is implemented. This
function is sealed in order to enforce the use of the new
SetupArbitrary function in Line 14, which uses a setup
argument. The Setup simply dequeues a test case and assigns

it as the current test. The new SetupArbitrary function is then
called with the setup argument. The user now has to implement
the SetupArbitrary instead of the Setup function. In Line 15–
20 the Next function is shown. Similar to Setup, this function
dequeues an argument which is used in our introduced Next
function (Line 21). The original Next function is sealed as
well to enforce the use of our new function, which has to
be supplied by the user in a derived class. In Line 17 a stop
operation is generated if the test case is finished. The stop
operation is a functionality that was implemented during our
work into FsCheck in order to enable a break-off during the
generation of an operation sequence. It is now part of the
FsCheck library. When a stop operation is returned by the
Next function, FsCheck identifies this as the end of the current
test case and stops generating new operations. This can be
useful if a model is in a final state or as in our case if the test
case needs to be terminated manually.

IV. EXAMPLE

The example of a bank account will illustrate how model-
based testing (MBT) can be performed with FsCheck. Further-
more, we will show how a simple generator based on regular
expressions (regex) can be integrated as an external generator
for the generation of operation sequences. Listing 2 shows

1 p u b l i c a b s t r a c t c l a s s Exte rna lMach ine<Actua l , Model , SetupArg , Opera t ionArg> : Machine<Actua l , Model> {
2 p u b l i c Queue<MachineRunArguments<SetupArg , Opera t ionArg>> T e s t C a s e s { g e t ; p r o t e c t e d s e t ; }
3 MachineRunArguments<SetupArg , Opera t ionArg> c u r r e n t T e s t ;
4 p u b l i c E x t e r n a l M a c h i n e ( Queue<MachineRunArguments<SetupArg , Opera t ionArg>> t e s t c a s e s ) : base ( i n t . MaxValue ) {
5 T e s t C a s e s = t e s t c a s e s ;
6 }
7 p u b l i c s e a l e d o v e r r i d e A r b i t r a r y<Setup<Actua l , Model>> Se tup {
8 g e t {
9 i f ( T e s t C a s e s . Count != 0 && ( c u r r e n t T e s t == n u l l | | c u r r e n t T e s t . Count == 0 ) )

10 c u r r e n t T e s t = T e s t C a s e s . Dequeue ( ) ;
11 re turn S e t u p A r b i t r a r y ( c u r r e n t T e s t . SetupArgument ) ;
12 }
13 }
14 p u b l i c a b s t r a c t A r b i t r a r y<Setup<Actua l , Model>> S e t u p A r b i t r a r y ( SetupArg a r g ) ;
15 p u b l i c s e a l e d o v e r r i d e Gen<O p e r a t i o n<Actua l , Model>> Next ( Model m) {
16 i f ( c u r r e n t T e s t . Count == 0)
17 re turn Gen . C o n s t a n t ( ( O p e r a t i o n<Actua l , Model>) new S t o p O p e r a t i o n<Actua l , Model > ( ) ) ;
18 var a r g = c u r r e n t T e s t . Dequeue ( ) ;
19 re turn Next (m, a r g ) ;
20 }
21 p u b l i c a b s t r a c t Gen<O p e r a t i o n<Actua l , Model>> Next ( Model m, O p e r a t i o n A r g a r g ) ; }

Listing 1. External machine which represents the interface for external generators.



1 p u b l i c c l a s s BankAccount {
2 p u b l i c i n t Money { g e t ; p r i v a t e s e t ; }
3 p u b l i c BankAccount ( i n t i n i tMoney ){Money = in i tMoney ;}
4 p u b l i c vo id D e p o s i t ( i n t i n c ) { Money += i n c ; }
5 p u b l i c vo id Withdraw ( i n t dec ) { Money −= dec ; }
6 p u b l i c o v e r r i d e s t r i n g T o S t r i n g ( )
7 { re turn S t r i n g . Format ( ” BankAccount = {0}” , Money ) ; }
8 }

Listing 2. Simple bank account implementation as system under test.

the SUT of this example. In a real world example we have
to imagine complex operations behind the logic of a bank
account. However, this example attempts to be minimal.

Listing 3 shows an FsCheck interface implementation for
MBT. FsCheck uses the interface Machine which has the SUT
and the Model as template parameters (Line 1). We model the
BankAccount as an integer number representing the money on
the account. Moreover, the Machine interface contains method
signatures for Setup and Next . The function Setup returns an
Arbitrary of the type Setup. A Setup is a class that contains
two functions. One that returns the initial state of the SUT
(Actual ) and another one that returns the initial state of the
model. The Setup, as well as the Arbitrary , are shown in
Listing 4. The function Next uses a generator to generate an
operation that will be performed on the SUT and the model.

The last parts we need are the operations. Listing 5 shows
a DepositOperation . We want our bank account balance to
remain between 0 and 100. We ensure that the bank account
is not tested outside these boundaries via preconditions. The
Run function adds the amount that we want to deposit to our
model. It is executed during the generation of a test case and
the model state is stored for a comparison with the SUT. After
the generation phase, Check exercises the SUT and compares
the stored model state with the value on the bank account. This
represents our postcondition and is returned as a property. The
WithdrawOperation is implemented in a similar manner. An
Arbitrary class that includes a shrinker can be registered to
shrink such operations, e.g., by minimizing their attributes.

In order to execute our specification we transform our ma-
chine into a property with the provided FsCheck functionality.

new BankAccountMachine ( ) . T o P r o p e r t y ( ) . QuickCheck ( ) ;

By converting the machine into a property, we can apply
the QuickCheck method, which produces 100 test cases with
increasing length. If we execute the above line, we will get
output for each test case. Test-case outputs will have the form
as shown in the following lines.

( 9 2 , Se tup BankAccount )
D e p o s i t : 6 −> 98
Withdraw : 2 −> 96
Withdraw : 3 −> 93
Withdraw : 1 −> 92
Withdraw : 5 −> 87

In the first line we see the initial state of our model, which
is 92. The following lines contain the output of the ToString
format of the operation and the model value after execution of
the operation. In this example the first operation deposits an
amount of six. With the initial balance of 92 the balance should
be 98 after execution of the operation. Note how defined limits
are adhered to. Almost no Deposit operations were executed
since the balance is close to the upper limit of 100.

To show how an external generator can be included into a
PBT tool, a sequence generator based on regex was created
and integrated into FsCheck. The generator shall serve as an
example to demonstrate our approach. It uses a regex to create
a sequence of identifiers encoded as a string. These identifiers
are then used to create operation types of the sequence. For
example, by using the regex (Operation1 )+.(Operation2 )∗

the generator will create test cases which always start with
at least one operation of the first type and then may add
operations of the second type.

In Listing 6, an implementation based on the
ExternalMachine for the bank account is presented.
The SetupArgument is of type integer and is ignored.
The initial state of the bank account is generated using
the PBT generators. The OperationArgument is of type
string and contains the name of the operation to be created.
In Lines 6–11 the Next function is shown. It implements
the corresponding abstract function of Listing 1. In the
previous case (Listing 3), one of the two generators for the
operations was chosen randomly with the FsCheck function
Gen.OneOf . In this case the type of operation is decided by
the name of the operation (opName) which was generated
by the external regex-generator. The value that is withdrawn
or deposited is generated as previously, using FsCheck
generators. In order to test the property of an external
machine the maximum number of test cases has to be set in
the configuration and a queue of MachineRunArguments ,
which contains the sequence of operation names, has to be
passed to the constructor.

The property can then be checked with the following lines
of code where tests is the queue of MachineRunArguments
which represent the test cases.

C o n f i g u r a t i o n c o n f i g = C o n f i g u r a t i o n . VerboseThrowOnFai lu re ;
c o n f i g . MaxNbOfTest = t e s t s . Count ;
new BankRegexBasedMachine ( t e s t s ) . T o P r o p e r t y ( ) . Check ( c o n f i g ) ;

This queue is generated by a generator function which uses a
regex to generate test cases. Fare,5 a .NET port for Google’s
Java library Xeger6 was used to generate strings from the

5https://github.com/moodmosaic/Fare
6https://code.google.com/archive/p/xeger

1 p u b l i c c l a s s BankAccountMachine : Machine<BankAccount , i n t> {
2 p u b l i c o v e r r i d e A r b i t r a r y<Setup<BankAccount , i n t>> Se tup { g e t { re turn new BankAccountSetupArb ( ) ; } }
3 p u b l i c o v e r r i d e Gen<O p e r a t i o n<BankAccount , i n t>> Next ( i n t v a l u e ){
4 var incGen = Gen . Choose ( 1 , 1 0 ) . S e l e c t ( i => ( O p e r a t i o n<BankAccount , i n t >) new D e p o s i t O p e r a t i o n ( i ) ) ;
5 var decGen = Gen . Choose ( 1 , 1 0 ) . S e l e c t ( i => ( O p e r a t i o n<BankAccount , i n t> ) new Withd rawOpera t ion ( i ) ) ;
6 re turn Gen . OneOf ( incGen , decGen ) ;
7 } }

Listing 3. Bank account machine interface implemantation.

https://github.com/moodmosaic/Fare
https://code.google.com/archive/p/xeger


1 p u b l i c c l a s s BankAccountSetup : Setup<BankAccount , i n t> {
2 p u b l i c i n t I n i t i a l { g e t ; }
3 p u b l i c BankAccountSetup ( i n t i n i t a l ) { I n i t i a l = i n i t a l ; }
4 p u b l i c o v e r r i d e BankAccount A c t u a l ( ) { re turn new BankAccount ( I n i t i a l ) ; }
5 p u b l i c o v e r r i d e i n t Model ( ) { re turn I n i t i a l ; }
6 }
7 p u b l i c c l a s s BankAccountSetupArb : A r b i t r a r y<Setup<BankAccount , i n t>> {
8 p u b l i c o v e r r i d e Gen<Setup<BankAccount , i n t>> G e n e r a t o r {
9 g e t { re turn Gen . Choose ( 0 , 1 0 0 ) . S e l e c t ( i => ( Setup<BankAccount , i n t >)new BankAccountSetup ( i ) ) ; }

10 }
11 p u b l i c o v e r r i d e IEnumerable<Setup<BankAccount , i n t>> S h r i n k e r ( Setup<BankAccount , i n t> a rg1 ) {
12 foreach ( var i in Arb . D e f a u l t . I n t 3 2 ( ) . S h r i n k e r ( ( ( BankAccountSetup ) a rg1 ) . I n i t i a l ) ) {
13 y i e l d re turn new BankAccountSetup ( i ) ;
14 } } }

Listing 4. Bank account setup and arbitrary.

1 p u b l i c c l a s s D e p o s i t O p e r a t i o n : O p e r a t i o n<BankAccount , i n t>
2 {
3 p u b l i c i n t Amount { g e t ; p r i v a t e s e t ; }
4 p u b l i c D e p o s i t O p e r a t i o n ( i n t amount ){Amount = amount ;}
5 p u b l i c o v e r r i d e bool Pre ( i n t m) {
6 i f (m + Amount > 100)
7 re turn f a l s e ;
8 re turn true ;
9 }

10 p u b l i c o v e r r i d e i n t Run ( i n t m) { re turn m + Amount ; }
11 p u b l i c o v e r r i d e P r o p e r t y Check ( BankAccount a , i n t m){
12 a . D e p o s i t ( Amount ) ;
13 re turn ( a . Money == m) . T o P r o p e r t y ( ) ;
14 }
15 p u b l i c o v e r r i d e s t r i n g T o S t r i n g ( ) {
16 re turn S t r i n g . Format ( ” D e p o s i t :{0} ” , Amount ) ;
17 } }

Listing 5. Implementation of the deposit operation.

supplied regex. A string based on a given regex can be easily
generated with the following lines.

var gen = new Xeger ( r e g e x ) ;
s t r i n g s e q u e n c e = gen . G e n e r a t e ( ) ;

The generated string is a sequence of operation types which
represents a test case. It has to be parsed and stored in a queue
in order to use it within our ExternalMachine .

A test case executed with the regular FsCheck Machine
interface will create sequences which will use both op-
erations approximately as often. Of course, the likelihood
of the operations can be changed to favour one operation
over the other. However, the flexibility is limited. With a
regex we can focus better on certain aspects of the sys-
tem by adjusting the regex. A specification that focuses
heavily on withdrawing can utilize the following regex
Withdraw .(Withdraw)+.(Withdraw |Deposit)+. In a speci-
fication as simple as a bank account, modelling the sequences
based on regex might not be very useful since the random
generator of a PBT tool will most likely cover enough useful

scenarios. With more complex systems this approach can be
used to target certain critical scenarios that are more likely to
produce errors. It can also help to target rare operations that
can only be triggered in certain corner cases.

V. INDUSTRIAL CASE STUDY

The approach was developed for testing a web-service
application provided by our industrial project partner, AVL.7

The tested system is called Testfactory Management Suite
(TFMS) and is used in the automotive industry.8 It enables
the management of data, resources, activities, work flows and
information of test fields. The test field may test, e.g., car
engines or power trains. Various activities are supported, like
test preparation, planning, execution, data management and
analysis. The application comprises a number of modules, each
providing different functionalities, like managing test orders.

As explained in Section II-C, we apply the tool MoMuT and
we compare its mutation-based test case generation method
with the random testing of FsCheck. Our aim for the integra-
tion of MoMuT is to minimize the test suite and still have
certain guaranteed coverages on the model. This reduces the
test execution time without keeping important model aspects
untested. The process of our PBT integration with this tool
is shown in Figure 3. The first step is to parse Rule Engine
Models (REMs) to input models for FsCheck that are in the
form of EFSMs. Then, we further transform these EFSMs for
MoMuT. In order to run this tool, we need a model in the
form of an object-oriented action system. Furthermore, we add
observer automata to our models in order to specify the model
components that should be covered. An observer automata is

7https://www.avl.com
8https://www.avl.com/-/avl-testfactory-management-suite-tfms

1 p u b l i c c l a s s BankRegexBasedMachine : Ex te rna lMach ine<BankAccount , i n t , i n t , s t r i n g> {
2 p u b l i c BankRegexBasedMachine ( Queue<MachineRunArguments<i n t , s t r i n g>> t c s ) : base ( t c s ) { }
3 p u b l i c o v e r r i d e A r b i t r a r y<Setup<BankAccount , i n t>> S e t u p A r b i t r a r y ( i n t i g n o r e d ){
4 re turn Arb . From ( new BankAccountSetupArb ( ) ) ;
5 }
6 p u b l i c o v e r r i d e Gen<O p e r a t i o n<BankAccount , i n t>> Next ( i n t m, s t r i n g opName){
7 i f ( opName . E qua l s ( ” D e p o s i t ” ) )
8 re turn Arb . D e f a u l t . P o s i t i v e I n t ( ) . G e n e r a t o r . S e l e c t ( i => ( O p e r a t i o n<BankAccount , i n t >)new D e p o s i t O p e r a t i o n ( i . Get ) ) ;
9 e l s e i f ( opName . Eq ua l s ( ” Withdraw ” ) )

10 re turn Arb . D e f a u l t . P o s i t i v e I n t ( ) . G e n e r a t o r . S e l e c t ( i => ( O p e r a t i o n<BankAccount , i n t >)new Withd rawOpera t ion ( i . Get ) ) ;
11 e l s e throw new Not Imp lemen tedExcep t ion ( ” O p e r a t i o n name ” + opName + ” i s n o t implemented . ” ) ;
12 } }

Listing 6. Regex-based external machine for testing a bank account.

https://www.avl.com
https://www.avl.com/-/avl-testfactory-management-suite-tfms
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a state machine that can monitor and accept traces or sets
of traces, i.e. test suites of a given EFSM. Coverage criteria
usually consist of a list of model aspects that needs to be
covered. The observer monitors the traces that are produced
during the execution of the EFSM. It reports acceptance when
all required aspects of the EFSM are observed [5]. Combining
observer automata with mutation testing allows us to generate
test cases that can find a difference in the coverage of a model
and a mutant. We declare the accepting state of the observer as
observable output. When non-conformance is found, then we
know that the coverage is different, because either the observer
of the model or of the mutant are in the accepting state, but
not both. For generating mutations of the model we need to
specify a mutation operator that injects faults into the model.
MoMuT performs a conformance check between the model
and a mutated version in order to produce an abstract test case
in the case that there is a difference. This abstract test case
represents a command sequence and is fed into FsCheck. The
commands are then completed with test data that is generated
within FsCheck.

The case study for this paper was applied to one module
of the TFMS, which is called the Test Equipment Manager
(TEM). The main function of the TEM module is the ad-
ministration of test equipment and it comprises two REMs,
one for test equipment (TE) and one for test equipment types
(TET). Equipment is grouped into base equipment types such
as dynamometers, sensors, test beds, measurement devices,
input/output modules and many others. These pieces of equip-
ment are created, configured, edited, calibrated and maintained
in this module. A state machine of an example test equipment,
a dynamometer, is shown in Figure 4. We skip the required
test data associated to transitions. It can be seen that the model
has a number of tasks to manage/edit the test equipment and
also that these tasks lead to different states. In our case a task
represents the submission of a web form. It can be possible
in various states and also lead to different next states. Note

that the models for this case study were more complex than
the figure might suggest, because we had to consider several
instances of the equipment. Hence, we also added operations
to switch between instances of this REM. The model of a TET
is similar to this state machine and is therefore omitted.

Table I shows how many states, tasks, transitions and
attributes were tested of the two REMs. The model was
only partly tested since some transitions and states were
not fully supported or not implemented, because they were
special cases. The numbers in the parentheses represent the
total numbers including these untested items. To evaluate the
approach of implementing external test case generators, we
compared the test cases generated with MoMuT to the regular
FsCheck generation approach. The experiments investigate
how adequate the two techniques cover the model.

We first discuss the experiments with MoMuT. In order to
generate test cases, certain parameters have to be set. The
number of instances per REM was fixed to five. Although
these instances were dynamically created with Duplicate or
Create tasks, the state space needs to be built initially, because
MoMuT does not support dynamic data structures. We set the
number of mutants that are created to ten. It could be observed
that most mutant operators resulted in similar abstract test
cases. Therefore, we only considered one operator that changes
the destination state of a transition. We used different depths
for the ioco check and a depth of 20 for the refinement check.
If no error is found within the maximum depths, no test case
will be generated. It was observed that the runtime of the test
generation process is at least exponential to the ioco depth.
The depth was increased step by step until the process took
too long or the depth of 10 was reached.

Table II shows the exploration times and the number of test
cases tc that were generated for different models and observer
strategies (automata). We used an observer that requires that
all states have to be visited at least once and also one for all
tasks. Both count a state or tasks as visited if it was observed at 
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TABLE I
NUMBER OF STATES, TASKS AND TRANSITIONS IN REMS OF THE TEM.

Model States Tasks Transitions Attributes
TestEquipmentType 4 (5) 8 (10) 16 (20) 35 (43)

TestEquipment 5 (7) 7 (13) 13 (38) 18 (23)

any instance. The results were obtained with a Lenovo T450s
notebook running Windows 8.1 with a 2.2 GHz Intel i5 with 4
cores and 8 GB RAM. dn stands for the ioco depth n, e.g., d10
shows the time it took for the exploration for a ioco depth of
10. If the computation took too long for a depth, an estimation
is given and the time value is marked with an asterisk (*).
The estimation is calculated using exponential regression. We
can observe that the task strategies take longer than the state
strategies. A deeper depth is needed to find mutants, since it
needs longer test sequences to cover all tasks. For the TET
model no test case was found for the task strategy, because a
deeper ioco depth would be required.

The model coverage is analysed as follows. The abstract
test cases from the MoMuT generation process are used as a
reference. For a comparison of the coverage items the amount
and length of test cases is controlled. The FsCheck test run is
set to the number and length of the MoMuT test cases. The
following figures show the coverage of the different strategies
and models. For a strategy a test suite is generated composed
of x test cases of a fixed length. The length is four for the
two state coverage observers and eight for the task coverage
observer. The number of test cases per suite is plotted on the
x-axis. On the y-axis the coverage of the model is plotted in
percent. Each graph contains two data series, one for the test
cases generated with MoMuT and one for FsCheck.

The analysed coverage criteria are state, task and transition
coverage. The experiment is repeated 50 times for the FsCheck
sequences and the average value is plotted. Since the MoMuT
generation process is costly, it is only performed once. Repeat-
ing the experiment multiple times would help approximate the
expected coverage values of the MoMuT sequences.

In Figure 5 and Figure 6 it can be seen that the state
coverage is 100% with one test case for the MoMuT approach.
This is expected and a validation that the state observer works
as intended. The transition coverage of MoMuT and FsCheck
is similar, because MoMuT does not always find new test
sequences for all mutants. Multiple test cases with the same
sub-sequences are produced, which deteriorates the transition
coverage. However, MoMuT has an option to reuse existing
test cases, which could resolve this issue. Figure 7 shows
that state as well as task coverage is 100% for the MoMuT
approach. In our models no unreachable states are included.
This means if all tasks are covered all states are covered as
well. This is not evident in all models. In all strategies it can
be observed that MoMuT covers the model better for smaller
test suites. For larger test suites both methods are able to cover
most of the model. The MoMuT sequences are also guaranteed
to cover a certain criteria with only one test case based on
the observer used. Since FsCheck relies on random testing
no matter how many test cases are generated, it cannot be
guaranteed that full coverage is achieved with a test suite.

TABLE II
EXPLORATION TIMES OF TEM REMS USING MOMUT WITH OBSERVERS.
Scope Strategy d2 d4 d6 d8 d10

time tc time tc time tc time tc time tc
TET States 4.34s 0 38.10s 9 1.65m 8 11.54m 9 53.51m 9
TET Tasks 6.41s 0 2.58m 0 31.10m 0 8.56h* - 140.63h* -

TE States 3.60s 0 25.76s 4 50.47s 10 5.02m 9 1.56m 10
TE Tasks 9.01s 0 3.06m 0 54.06m 2 13.45h* - 213.63h* -

VI. CONCLUSION

We have presented a testing technique that integrates an
external test-case generator into a PBT tool in order to
combine the features of two test-case generation strategies.
We discussed the architecture of our implementation and
illustrated the integration method with a bank account example
and an external generator based on regular expressions.

A web-service application from AVL called testfactory
management suite was tested for the evaluation of our ap-
proach. The model-based mutation testing tool MoMuT was
our external generator for this evaluation. The experiments
conducted in this case study have shown that it can be useful
to integrate an external test case generator into a PBT tool.
The most notable differences between the test generation
with MoMuT and the random approach with FsCheck is the
difference in computation times. The test suite generation
time for MoMuT is very high. It can take several minutes
to hours to generate useful sequences, hence it becomes in-
feasible for bigger models. This is a known limitation of
the approach. FsCheck can generate a large number of test
cases within one second. Since the MoMuT approach uses
observer automata we can guarantee that a single test case is
able to fulfil a coverage criterion like state coverage. The test
suits generated with MoMuT covers more of the model with
fewer test cases as compared to plain FsCheck. This advantage
becomes negligible as soon as the amount and length of test
cases is increased. It is evident that a smaller test suite will
need less execution time. Therefore, it makes sense to optimize
for a small test suite if the test-execution time is expensive.
The short MoMuT sequences cover most parts of the model
and are therefore well suited for regression testing.

In the future we plan to evaluate a combined approach of
mutation testing and random testing with FsCheck. It has been
shown that combination of these two test strategies provides
benefits for killing mutants [1]. An evaluation with further
external generators is also an option, as our integration is
applicable to all kinds of test case generators that can produce
more meaningful test cases than random testing.
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