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Abstract—In recent years, statistical model checking (SMC)
has become increasingly popular, because it scales well to larger
stochastic models and is relatively simple to implement. SMC
solves the model checking problem by simulating the model for
finitely many executions and uses hypothesis testing to infer
if the samples provide statistical evidence for or against a
property. Being based on simulation and statistics, SMC avoids
the state-space explosion problem well-known from other model
checking algorithms. In this paper we show how SMC can be
easily integrated into a property-based testing framework, like
FsCheck for C#. As a result we obtain a very flexible testing
and simulation environment, where a programmer can define
models and properties in a familiar programming language.
The advantages: no external modelling language is needed and
both stochastic models and implementations can be checked. In
addition, we have access to the powerful test-data generators
of a property-based testing tool. We demonstrate the feasibility
of our approach by repeating three experiments from the SMC
literature.

I. INTRODUCTION

Statistical model checking (SMC) is an efficient method to
test certain properties of stochastic models. These properties
are usually defined in temporal logics, like linear temporal
logic (LTL). SMC can be used to answer both qualitative
and quantitative questions about these properties by analysing
executions of a stochastic model to measure how often the
properties are satisfied. A number of tools exist that perform
SMC for different kinds of models. For example, UPPAAL-
SMC checks priced timed automata [7] or PLASMA-lab
supports a number of different modelling languages, like
the Reactive Module Language or Matlab Simulink [6], [18].
However, the existing SMC tools are not as flexible as some
situations or users may require. They are limited by the
modelling language and the properties are limited by the used
logics. Therefore, we propose a new SMC approach that builds
on property-based testing (PBT).

PBT is a testing technique that tries to falsify a given property
by generating random input data and checking the expected
behaviour [8]. PBT is very flexible in the sense that properties
can range from simple algebraic equations to complex state
machine models.

For our SMC approach we introduce new SMC properties
that take classical PBT properties as input and check them
with an SMC algorithm. Our SMC properties can be applied to
both algebraic and state machine properties that can generate

command sequences and compare a system-under-test (SUT)
to a model after each command execution.

With our approach we can do both, SMC by simulating
stochastic models and conformance testing of an SUT with
stochastic failures. For classical SMC we define our stochastic
models with PBT state machine properties, but we only exploit
the model part of these state machine properties, the part for
the SUT is neglected.

Additionally, conformance testing can be done by utilising
the default state machine properties and comparing faulty
systems with a correct model repeatedly by executing these
state machine properties within our SMC properties.

PBT provides the tester with generators that enable the
generation of test data with certain probability distributions. For
example, it is possible to choose between multiple transitions
by assigning weights to each of them, or like in UPPAAL-
SMC, one may apply a distribution to define the time one may
wait in certain states. The default behaviour for checking PBT
state machines is to make random walks through the model by
generating (input) command sequences. The generation of these
sequences can also be controlled with generators. For SMC
we need a discrete-event simulation, which can be realised
via the random walks in PBT. Hence, PBT has a number
of features that are helpful to implement a statistical model
checker. For the demonstration of our approach we use the
PBT tool FsCheck [1] and C# as a programming language.

Related Work and Contribution: SMC was applied in
several case studies and a number of tools exist that implement
a variety of SMC algorithms. Simple algorithms like Monte
Carlo simulation are already supported by existing PBT tools.
For example, with ScalaCheck [28] the required number of
samples can be specified and it can report the number of failing
samples. This enables a simple Monte Carlo simulation. In
contrast, the focus of our approach is on hypothesis testing,
but we also included Monte Carlo methods for demonstration
purposes, because they are common SMC algorithms.

A tool that provides similar functionality is UPPAAL-
SMC [7]. This tool supports SMC for priced timed automata,
which can have weights on transitions and probability distribu-
tions for the dwell time in states. It supports hypothesis testing
and probability comparison and estimation by applying Wald’s
sequential probability ratio test (SPRT) [34] and Monte Carlo
simulation with Chernoff-Hoeffding bound [14].



The probabilistic model checker PRISM was also extended
with SMC functionality [23]. Similar to UPPAAL-SMC it sup-
ports priced timed automata, but it also supports discrete- and
continuous-time Markov chains, Markov decision processes and
probabilistic automata. They also support the same algorithms
as UPPAAL-SMC, i.e. the SPRT and Monte Carlo simulation
with Chernoff-Hoeffding bound.

VESTA is another SMC tool that supports hypothesis testing
of properties in probabilistic computation tree logic (PCTL)
and continuous stochastic logic (CSL) [32]. For modelling,
VESTA uses a language, which is related to PRISM, in order
to specify discrete-time and continuous time Markov chains.
Furthermore, the tool includes an interface to describe models
in probabilistic rewrite theories with the algebraic specification
language PMAUDE. AlTurki and Meseguer [3] presented an
extension of VESTA called PVESTA. This extension includes
parallel algorithms for SMC and client-server support.

Another statistical model checker called Ymer was presented
by Younes [36]. It is similar to PVESTA and supports properties
in PCTL and CSL and uses the SPRT. For modelling it uses an
extension of the PRISM language, which allows the definition
of time-homogeneous generalised semi-Markov processes.

An alternative to realise probabilistic models is probabilistic
programming [12], [35], [29], which introduces probability
distributions into normal programming languages. Different
inference techniques, like Bayesian inference [20], are sup-
ported. The difference to our approach, or to SMC in general,
is that probabilistic programming does not aim to evaluate
quantitative properties, but performs probabilistic inference.
Most importantly, it does not support PBT.

The most similar to our work is from Jegourel et al. [18] and
Boyer et al. [6]. First, they had developed the SMC platform
PLASMA, which was later replaced by the PLASMA-lab
library. The library can perform SMC for multiple modelling
languages. For example, it supports the PRISM language
and biological languages, it has plugins for Matlab, SystemC
and further plugins can be implemented for other modelling
languages. This is a nice feature, because it allows the creation
of a custom statistical model checker. However, in order to
write a plugin for PLASMA-lab, a user has to be familiar
with the architecture of the library and also with the logics
for the property definition. The library uses bounded linear
temporal logic (BLTL) for the definition of properties and
as SMC algorithms it supports simple Monte Carlo, Monte
Carlo with Chernoff-Hoeffding bound and SPRT. Furthermore,
Legay et al. [26] presented an algorithm for change detection
called cumulative sum (CUSUM), which was also added to
the PLASMA-lab library.

Existing SMC tools often have a rather limited modelling
language. In order to reduce the effort in modelling and
specification an additional layer of abstraction, i.e. "syntactic
sugar", can be added. For example, David et al. presented a
simulation method for biological systems for UPPAAL-SMC
by translating these systems to timed automata [9]. Another
approach that enables a high-level specification of Systems of
Systems (SoS) and SoS requirements was presented by Arnold

et al. [4]. They show how a contract language can be used
to define properties, which they translate to BLTL formulas
for PLASMA-lab. In contrast, we do not introduce a new
language for the model or property definition and hence do
not need translators. With C# we utilize an existing high level
programming language that is familiar to many developers
in the industry. We show that the models and the properties
to be checked can be easily defined in an object-oriented
programming language. No new notation or (temporal) logic
needs to be learned.

Another advantage is the powerful test-data generators, which
are the major ingredient of PBT. These generators can be freely
combined and are especially useful for applications, which
require a large amount of complex input data, like information
systems. Additionally, they support the generation of data with
certain probability distributions, which is useful for stochastic
models.

To the best of our knowledge, no existing work combines
SMC with PBT, except for papers on PBT tools that report
the number of passed and failed test-cases using Monte Carlo
simulation.

This paper is an extension of our previous short work-in-
progress paper [2]. In this previous work we outlined the
idea of integrating SMC into a PBT tool by introducing new
properties and we demonstrated how an SUT with stochastic
failures can be evaluated via a conformance check with an
ideal model. We showed this idea only for the SPRT and a
simple Monte Carlo simulation and we applied it only to a
simple example. We did not perform any evaluation.

Compared with our previous work the novel contributions
are the following. We present new SMC properties for further
SMC algorithms, i.e. Monte Carlo with Chernoff-Hoeffding
bound and CUSUM. Another contribution is an optimized PBT
approach for classical SMC. The optimisation is that we only
exploit the model part of a state machine property in order to
avoid the overhead of running both a model and an SUT and it
also gives us the possibility to stop during the generation of a
sample. Furthermore, we present an evaluation of our approach
with three typical SMC examples from the literature.

Structure: First, Section II will explain the basics of SMC,
PBT and FsCheck. Next, in Section III we demonstrate how
SMC methods can be applied to a small example of a stochastic
counter with faulty behaviour. Then, in Section IV we present
details about the implementations of our approach. In Section V
we evaluate our approach. Finally, we draw our conclusions in
Section VI.

II. BACKGROUND

A. Statistical Model Checking

SMC is a testing method that evaluates certain properties
of a stochastic model. These properties are usually defined
with (temporal) logics, like BLTL, and they can answer both
quantitative and qualitative questions. For example questions,
like what is the probability that the model satisfies a property or
is the probability that the model satisfies a property greater than
or below a certain threshold? In order to answer these kinds



of questions, a statistical model checker produces samples
in the form of random walks on the stochastic model and
checks whether the property holds for these samples. Various
SMC algorithms are applied in order to compute the total
number of samples needed to find an answer for a specific
question or to compute a stopping criterion. This criterion
determines when we can stop sampling because we have found
an answer with a required certainty. In this work, we focus
on the following algorithms, which are commonly used in the
SMC literature [25], [24].

Simple Monte Carlo simulation. This is the simplest SMC
algorithm. It answers quantitative questions and works as
follows. First, a fixed sample number and a property are
specified by the user. Then, the statistical model checker simply
generates the specified number of samples and counts for
how many of them the property holds. Finally, the number of
samples that fulfil the property divided by the total number
of samples is used to estimate the probability that the model
satisfies the property [6].

Monte Carlo simulation with Chernoff-Hoeffding bound.
The algorithm computes the number of simulations n needed
in order to estimate the probability γ that a stochastic model
satisfies a Boolean property. The procedure is based on the
Chernoff-Hoeffding bound [15] that provides an upper limit
for the probability that the estimation error is below a certain
value ε. Assuming a confidence 1− δ the required number of
simulations can be calculated as follows:

n ≥ 1

2ε2
ln

(
2

δ

)
The simulations represent discrete random variables
X1, . . . , Xn with outcome xi = 1 if the property holds
and xi = 0 otherwise. Let the estimated probability be
γ̄n = (

∑n
i=1 xi)/n, then the probability that the estimation

error is below ε is greater than our required confidence.
Formally we have:

Pr(|γ̄n − γ| ≤ ε) ≥ 1− δ

After the calculation of the sample number n a simple Monte
Carlo simulation is performed. This algorithm is implemented
in PLASMA-lab [17].

Sequential Probability Ratio Test (SPRT). This sequential
method [34] is a form of hypothesis testing, which can be
used to answer qualitative questions. Given a random variable
X with a probability density function f(x, θ), we want to
decide, whether a null hypothesis H0 : θ = θ0 or an alternative
hypothesis H1 : θ = θ1 is true for desired type I and type
II errors (α and β). In order to make the decision, we start
sampling and calculate the log likelihood ratio after each
observation of xi:

log Λm = log
pm1
pm0

= log

m∏
i=1

f(xi, θ1)

m∏
i=1

f(xi, θ0)
=

m∑
i=1

log
f(xi, θ1)

f(xi, θ0)

We continue sampling as long as log β
1−α < log Λm < log 1−β

α .
H1 is accepted when log Λm ≥ log 1−β

α and H0 when
log Λm ≤ log β

1−α [13].
Cumulative Sum (CUSUM). CUSUM [26] is a sequential

analysis technique similar to SPRT, but for detecting the change
of an initial probability. Given a finite set of Bernoulli random
variables X1, . . . , Xn, a probability for detecting a change
k ∈]0, 1[ and sensitivity threshold λ, we want to decide between
the hypotheses H0 : ∀i, 1 ≤ i ≤ N, pn < k and H1 : ∃i, 1 ≤
i ≤ N and a change appears at time ti : ∀n, 0 ≤ n ≤ N, such
that tn < ti =⇒ pn < k and tn ≥ ti =⇒ pn ≥ k. We
assume that we know the probability under normal conditions
pinit, which can, for example, be determined with a Monte
Carlo simulation. We calculate the log likelihood-ratio si and
the cumulative sum Sn =

∑n
i=1 si.

si =

{
log( k

pinit
) if xi = 1

log( 1−k
1−pinit

) otherwise

We stop sampling when Sn − min1≤i≤n(Sn) ≥ λ, which
means that a change pn ≥ k was detected at time tn or when
no change occurred after a specified number of samples.

B. Property-Based Testing

Property-based testing (PBT) is a random-testing technique
that aims to check the correctness of properties. A property
is a high-level specification of the expected behaviour of a
function-under-test that should always hold. For example, a
simple algebraic property might state that the length of a
concatenated list is equal to the sum of lengths of its sub-lists:

∀ l1, l2 ∈ Lists[T ] :
length(concatenate(l1, l2)) = length(l1) + length(l2)

With PBT we automatically generate inputs for such a property
by applying its data generators, e.g., the random list generator.
The inputs are fed to the function-under-test and the property
is evaluated. If it holds then this indicates that the function
works as expected, otherwise a counterexample is produced. A
counterexample can be quite complex. Therefore, PBT shrinks
it by searching for a smaller similar counterexample.

PBT also supports model-based testing. Models encoded
as extended finite state machines (EFSMs) [19] can serve as
source for state machine properties. An EFSM is a 6-tuple
(S, s0, V, I, O, T ). S is a finite set of states, s0 ∈ S is the initial
state, V is a finite set of variables, I is a finite set of inputs,
O is a finite set of outputs, T is a finite set of transitions. A
transition t ∈ T can be described as a 5-tuple (ss, i, g, op, st),
ss is the source state, i is an input, g is a guard, op is a
sequence of output and assignment operations, st is the target
state [19]. In order to create a state machine property out of
an EFSM, we have to write a specification comprising the
initial state, commands and a generator for the next transition
given the current state of the model. Commands encapsulate
(1) preconditions that define the permitted transition sequences,
(2) postconditions that specify the expected behaviour and (3)
execution semantics of transitions for the model and the SUT.



A state machine property states that for all permitted transition
sequences, the postcondition must hold after the execution of
each transition, respectively command [16], [30]. Formally we
can define a state machine property as follows:

cmd .runModel , cmd .runActual : S × I → S ×O
cmd .pre : I × S → B, cmd .post : S ×O × S ×O → B
∀s ∈ S, i ∈ I, cmd ∈ Cmds :

cmd .pre(i , s) =⇒ cmd .post(cmd .runModel(i , s),

cmd .runActual(i , s))

We have two functions to execute a command on the model
and on the SUT cmd .runModel , cmd .runActual . The precon-
dition cmd .pre defines the valid inputs for a command. The
postcondition cmd .post compares the outputs and states of the
model and the SUT after the execution of a command. PBT is
a powerful testing technique that allows a flexible definition
of generators and properties via inheritance or composition.
It scales well for a high number of tests, as it is random
testing and it can generate a large number of tests in an
acceptable time [33]. The first implementation of PBT was
QuickCheck for Haskell [8]. Numerous reimplementations
followed for other programming languages, like Hypothesis1

for Python or ScalaCheck [28]. We demonstrate our approach
with FsCheck [1].

C. FsCheck

The PBT tool FsCheck is a .NET port of QuickCheck with
influences of ScalaCheck. Similar to other PBT tools it supports
algebraic properties as well as state machine properties and it
is equipped with generators for common data types, which can
be combined or extended in order to build custom generators.

Furthermore, FsCheck has extensions for unit testing, which
support a convenient definition and execution of properties like
normal unit tests. We have successfully applied FsCheck for
the automated testing of web services in industry [1].

FsCheck can evaluate if an SUT conforms to a model by
generating command sequences and comparing the state of the
SUT with the expected state of the model after the command
execution. In order to perform such an evaluation, FsCheck
needs a state machine specification that it converts into a
state machine property. This property is able to perform the
generation of command sequences and the comparison of the
SUT with the model. In order to define such a state machine
specification, it is necessary to implement an interface for
FsCheck that includes the model and the SUT and their initial
states, a generator that selects transitions for a given model
state, and classes for the commands. More details about state
machine specifications in FsCheck were shown in our previous
work [1].

III. EXAMPLE

In this section we demonstrate our approach with a simple
example of a counter, which is commonly used in the PBT

1https://pypi.python.org/pypi/hypothesis
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Fig. 1. Stochastic model example of a counter from the PBT community.

community in order to illustrate model-based testing with state
machine properties.

Figure 1 shows the state machine of our counter implemen-
tation. It can be seen that we added stochastic faulty behaviour
to the increment function (Inc) of the counter. This behaviour
was achieved by adding a probabilistic choice: the function
can either do a normal increment (99%) or do nothing (1%).
The decrement function (Dec) works as usual.

Listing 1 shows the implementation of the counter with the
stochastic behaviour. Internally the counter uses an integer to
store the state. We utilise a System.Random object, which is a
pseudo-random number generator from the .NET framework,
to implement the stochastic behaviour. In the Inc function we
call random.Next(100), which gives us numbers from 0 to
99. This number is used to produce value 0 with probability
0.01 and value 1 with probability 0.99.

The main property we wanted to check for this example is
how likely it is that the counter with the stochastic behaviour
behaves like a normal counter. In order to check such properties
we implemented new properties that are based on the properties
from PBT with the difference that they perform an SMC
algorithm instead of normal property checks. Our new SMC
properties take a normal PBT property and parameters for
an SMC algorithm as input and apply the algorithm on the
input property. More details about the implementation of these
properties are discussed in Section IV.

The following listing shows an example property for Monte
Carlo simulation:
P r o p e r t y p = new CounterMachine ( ) . T o P r o p e r t y ( ) ;
new M o n t e C a r l o P r o p e r t y ( p , c o n f i g , 1 0 0 0 ) . QuickCheck ( ) ;

It can be seen that we first define an FsCheck state machine
property and after that we check it by performing a simple
Monte Carlo simulation with 1000 runs. This is done by
defining a MonteCarloProperty that takes the state machine
property and configuration parameters as input and executing
the QuickCheck method. The output of this method was that
the property holds in 98.7% of the cases.

Another example of a property for the SPRT is shown in
the following listing:
new SPRTProper ty ( p , c o n f i g , 0 . 9 5 , 0 . 9 , 0 . 0 1 , 0 . 0 1 )

1 p u b l i c c l a s s Coun te r {
2 p r i v a t e i n t n ; System . Random random ;
3 p u b l i c Coun te r ( System . Random r ) { t h i s . random = r ; }
4 p u b l i c vo id I n c ( ) {
5 n += random . Next ( 1 0 0 ) > 0 ? 1 : 0 ;
6 }
7 p u b l i c vo id Dec ( ) { n−−; }
8 p u b l i c i n t Get ( ) { re turn n ; }
9 }

Listing 1. Stochastic counter implementation for FsCheck.



The four arguments of the SPRT method are: the probability
for the null hypothesis, the probability for the alternative
hypothesis and the type I and type II error parameters. The
example demonstrates an SPRTProperty, which can check if
the probability that the stochastic counter works like a normal
counter is closer to 0.95 or 0.9. When we check this property
for samples of length 10, we obtain the result that the null
hypothesis H0 was accepted.

Similar to the SPRT, a property for CUSUM can be defined
as follows:
new CusumProper ty ( p , c o n f i g , 0 . 9 4 5 , 0 . 8 5 , 5 , 5000)

This property also requires four arguments: the initial probabil-
ity, the probability to detect a change, the sensitivity threshold
and a maximum sample number to stop, when no change
was detected. When we run this CusumProperty with samples
of length 10, then, as expected, no change is detected. After
the model was adapted so that the probability of a correct
increment is decreased after 1000 Inc commands, we were
able to observe this change after 345 samples. CUSUM is
useful for testing systems with random failures where the
probability of failure changes after a while. Knowing when
the change occurs helps in localising the fault.

The concrete testing of properties that we want to check
happens in the state machine specification of FsCheck. We
propose the following optimised approach for SMC. In conven-
tional PBT a state machine property has a part for the model
and for the SUT, which are both executed and compared. Due
to the overhead of running both the model and the SUT, we
utilise only the model part of these properties to simulate
stochastic models, the SUT part is ignored. We instrument
the model with observer functions that monitor the state of
the model during execution. With these observer functions we
form the conditions that are checked during run-time (run-time
verification). These conditions can be directly inserted in the
runModel function of a command, which is responsible to
perform the execution of an action on the model. If we observe
that the property is already fulfilled, we can terminate the
sample execution with a stop command. When we observe that
it fails, an exception is thrown, which also stops the generation
of further commands.

Optionally, it is also possible to make a conformance test
between an ideal model and an SUT with stochastic failures.
We already presented this approach in our previous work [2].
In this setting we provided the default state machine property
of FsCheck as input to our SMC properties. As mentioned,
the default state machine property runs both a model and
an SUT and checks, if the state of the SUT conforms to
the model. For example, we can use the stochastic counter
as SUT and a regular counter as model and test if we can
find a difference for a certain number of generated command
sequences. This approach is useful if an SUT has failures that
occur irregularly or if a black-box system is tested that cannot
be easily instrumented with additional observer functions. In
the following we will apply our optimised SMC approach,
because it is better suited for classical SMC.
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Fig. 2. Simulation results for the property: how likely is it that the stochastic
counter behaves like a normal counter?

Figure 2 shows the evaluation results of our counter. We
performed a Monte Carlo simulation with 100,000 samples for
each data point in order to compute the probability that the
stochastic counter acts like a normal counter. It can be seen
that the probability decreases with increasing sample length.
This behaviour met our expectations because with a larger
sample length, i.e. longer random walks on the model, it is
more likely that we see a faulty increment.

IV. IMPLEMENTATION

In this section we illustrate how we implemented our SMC
approach by introducing our own new SMC properties that are
based on PBT properties. Furthermore, we want to highlight the
advantages like flexibility and user convenience of our proposed
approach. The mathematical background of our implemented
SMC algorithms were already briefly discussed in Section II-A.

We propose new properties for each SMC algorithm. These
properties are based on properties from PBT with the difference
that they perform an SMC algorithm instead of a normal test
that only checks if a property holds or fails. We want to
know the probability that the property holds, or we want to
assess if the probability of the property is closer to a null
hypothesis or closer to an alternative hypothesis. Our new
SMC properties take a normal PBT property, a configuration
object for the check of the PBT property and parameters for
an SMC algorithm as constructor arguments. They provide
a QuickCheck function that performs the SMC algorithm by
simulating the input PBT property, which is used to generate
samples and also to evaluate them. When the simulation is
finished the result is presented to the user. The SMC properties
for the different SMC algorithms have the same structure,
but they require different parameters for the algorithms and
different stopping criteria for the simulation.

Listing 2 shows the MonteCarloProperty class, which can
perform a simple Monte Carlo simulation. It can be seen
that the constructor takes a property, a configuration object
for checking the property and the total sample number for
the simulation (Line 6). The QuickCheck function (Line 11)
performs the actual simulation. First, we initialise a counter for
the number of passing samples. Then, we run a for-loop that
creates samples with the specified sample number. A sample
is generated by applying the Check .One method, which takes
the PBT property and a config object as input. A config object
contains FsCheck configurations like Boolean flags to control
the output/exception behaviour of properties and the required
number of tests. The Check .One method also evaluates, if
the property was fulfilled. If it fails, an exception is thrown.



1 p u b l i c c l a s s M o n t e C a r l o P r o p e r t y {
2 p r o t e c t e d P r o p e r t y p r o p e r t y ;
3 p r o t e c t e d Conf ig c o n f i g ;
4 p r o t e c t e d i n t sample s ;
5
6 p u b l i c M o n t e C a r l o P r o p e r t y ( P r o p e r t y p , Conf ig c , i n t samples ) {
7 t h i s . p r o p e r t y = p ;
8 t h i s . c o n f i g = c ;
9 t h i s . s amples = samples ;

10 }
11 p u b l i c vo id QuickCheck ( ) {
12 i n t p a s s C n t = 0 ;
13 f o r ( i n t i = 0 ; i < samples ; i ++){
14 t r y {
15 Check . One ( c o n f i g , p r o p e r t y ) ;
16 p a s s C n t ++;
17 } ca tch {}
18 }
19 Conso le . Wr i t e ( " P r o p e r t y t r u e f o r : " + p a s s C n t + " samples \ n " ) ;
20 Conso le . Wr i t e ( " P r o p e r t y f a l s e f o r : " +( samples−p a s s C n t )+ " sample s \ n " ) ;
21 Conso le . Wr i t e ( " P r o p e r t y h o l d s " + ( ( double ) p a s s C n t / s amples ∗100)+ " %\n " ) ;
22 }
23 }

Listing 2. Implementation of a simple Monte Carlo simulation.

1 c l a s s C h e r n o f f P r o p e r t y : M o n t e C a r l o P r o p e r t y {
2 p u b l i c C h e r n o f f P r o p e r t y ( P r o p e r t y p , Conf ig c , double e p s i l o n , double d e l t a ) : base ( p , c , 0 ) {
3 t h i s . s amples = ( i n t ) Math . C e i l i n g ( ( 1 / (2∗Math . Pow ( e p s i l o n , 2 ) ) ) ∗ Math . Log (2 / d e l t a ) ) ;
4 Conso le . W r i t e L i n e ( " sampleNumber : " + t h i s . s amples ) ;
5 }
6 }

Listing 3. Implementation of a ChernoffProperty for Monte Carlo simulation with Chernoff-Hoeffding bound derived from a MonteCarloProperty.

1 c l a s s SPRTProper ty {
2 P r o p e r t y p r o p e r t y ;
3 Conf ig c o n f i g ;
4 double p0 ;
5 double p1 ;
6 double l o g _ a ;
7 double l og_b ;
8
9 p u b l i c SPRTProper ty ( P r o p e r t y p , Conf ig c , double p0 , double p1 , double a lpha , double b e t a ) {

10 t h i s . p r o p e r t y = p ;
11 t h i s . c o n f i g = c ;
12 t h i s . p0 = p0 ;
13 t h i s . p1 = p1 ;
14 t h i s . l o g _ a = Math . Log ( b e t a / (1 − a l p h a ) ) ;
15 t h i s . l og_b = Math . Log ( ( 1 − b e t a ) / a l p h a ) ;
16 }
17 p u b l i c vo id QuickCheck ( ) {
18 double s _ i = 0 ;
19 do{
20 bool s u c c e s s = f a l s e ;
21 t r y {
22 Check . One ( c o n f i g , p r o p e r t y ) ;
23 s u c c e s s = t rue ;
24 } catch {}
25 double r a t i o = s u c c e s s ? ( p1 / p0 ) : ( ( 1 − p1 ) / (1 − p0 ) ) ;
26 s _ i = s _ i + Math . Log ( r a t i o ) ;
27 } whi le ( l o g _ a < s _ i && s _ i < log_b ) ;
28 i f ( s _ i >= log_b ) {
29 Conso le . W r i t e L i n e ( "H1 a c c e p t e d . " ) ;
30 }
31 e l s e i f ( s _ i <= l o g _ a ) {
32 Conso le . W r i t e L i n e ( "H0 a c c e p t e d . " ) ;
33 }
34 }
35 }

Listing 4. Implementation of hypothesis testing with an SPRTProperty.



Therefore, we have put the method call inside a try-catch
block (Lines 14-17) and we only count a sample as passed, if
the method finishes successfully. After the desired number of
samples was evaluated the results are presented to the user.

Listing 3 shows how we constructed a ChernoffProp-
erty, which performs Monte Carlo simulation with Chernoff-
Hoeffding bound, by deriving from the MonteCarloProperty.
These two properties are very similar. The only difference is
that for the simple Monte Carlo simulation the user directly
specifies the total sample number. For the version with Chernoff-
Hoeffding bound, the user has to specify the required accuracy
and confidence with the parameters epsilon and delta. Then, the
algorithm computes the required sample number and performs
a Monte Carlo simulation. We can basically reuse the behaviour
from the base class. We only implement the calculation of the
sample number in the constructor (Line 3). Then, when the
normal QuickCheck method from the base class is called, the
computed sample number of the derived class is used and
the simulation is performed with the required accuracy and
confidence.

An SPRTProperty which performs the SPRT method is
shown in Listing 4. This property can decide if a null hypothesis
specified with the parameter p0 or an alternative hypothesis
given with p1 will be accepted. In contrast to the previous
algorithms we do not know the sample number in the beginning.
We have an indifference region, in which we have not found
a decision yet and where we have to continue sampling. The
thresholds for this indifference region are calculated in the
constructor with the desired type I and type II error parameters
alpha and beta (Lines 14-15). Inside the QuickCheck method
we perform the simulation. A sample is checked in the same
way as in a MonteCarloProperty (Lines 20-24). For each sample
we calculate the log likelihood ratio and sum it up with the
previous ratios (Lines 25-26). We stop when the sum is outside
the thresholds. Depending on which threshold was met, either
H0 or H1 is accepted.

Listing 5 shows a CusumProperty that performs the CUSUM
algorithm, which is similar to SPRT. As parameters this
property requires an initial probability p_init, a probability
k for detecting a change, a sensitivity threshold lambda and a
maximum number of samples for stopping when no change
was detected (Line 4). The first steps of the algorithm are
the same as for the SPRT, because we also need to calculate
the log likelihood ratio (Lines 12-17). The difference is that
we calculate the minimum of the ratio sums and check if the
difference to the current value is greater than lambda, in order
to detect a change (Lines 19-22).

The architecture of our SMC properties makes it easy to
check all kinds of PBT properties. Although our focus is
on stochastic models and state machine properties, it is also
possible to check the stochastic behaviour of other kinds of
properties. For example, one might want to check properties of
a stochastic function or a call to an operation with stochastic
failures. Our properties can easily be implemented in other
PBT tools. As already explained in Section II-B, there exist
various PBT tools for different programming languages. It is

not much effort to apply our approach for other tools since
the structure is simple and works for other languages as well.

The definition of our stochastic models and properties in a
high level programming language provides some benefits like
flexibility. For example, the models can be easily extended to
include observer functionality like counting certain incidents.
Counters can then be evaluated within the FsCheck specification
in order to decide if a sample fails. We looked at existing SMC
approaches and noticed that they are quite limited in some
areas, e.g., when one wants to check models with different
numbers of instances or when instances should be created
dynamically. In a high-level programming language it is quite
easy to create a fixed number of instances via a loop or even
dynamically add instances during the execution of a model.
Furthermore, we noticed that often very long formulas are
required for the properties within the models of existing SMC
approaches because the used notations often do not support
loop functionality. We will give examples and further details
about these issues in Section V. It should be noted that we
used a new experimental version of the FsCheck state machine
specification. The advantage of this version is that it makes it
possible to generate fixed length samples and that it supports
stop commands, which allows us to stop during the command
generation. These two features are quite important for our
implementation because we have to ensure that our generated
samples are long enough, but it is also important that we can
stop, when we know the result of a sample. More details
about this new experimental version can be found in the
documentation.2

V. EVALUATION

In this section we evaluate our SMC approach by applying
it to three existing case studies from the SMC community and
discuss differences to PLASMA-lab. We report performance
results, because they formed part of an original PLASMA-lab
case study. However, our primary focus is not performance,
but the usability and flexibility of our modelling style.

A. Dining Philosophers Case Study

We applied our first case study to a probabilistic version of
the dining philosophers by Pnueli and Zuck [31]. We based
our implementation on a case study which was presented on
the PLASMA-lab website.3 A similar example was also shown
for PRISM [21].

The implementation for this example was straightforward.
We have a simple philosopher state machine, which is illustrated
in Figure 3. A philosopher first decides if he wants to remain
thinking or if he becomes hungry. In the States 1 – 7 he
is hungry and in States 8 and 9 he is eating. The guards
lfree and rfree determine if the left and right forks are free.
Our model is basically a circle of individual philosophers
which all have a right and left neighbour, but it also contains
observation and control functionality like a counter for steps
and Boolean variables to check, if someone was eating in

2https://fscheck.github.io/FsCheck/StatefulTestingNew.html
3https://project.inria.fr/plasma-lab/examples/dining-philosophers



1 p u b l i c c l a s s CusumProper ty {
2 P r o p e r t y p r o p e r t y ; Conf ig c o n f i g ; double p _ i n i t ; double k ; double lambda ; i n t max_n ;
3
4 p u b l i c CusumProper ty ( P r o p e r t y p , Conf ig c , double p _ i n i t , double k , double lambda , i n t max_n ) {
5 t h i s . p r o p e r t y = p ; t h i s . c o n f i g = c ; t h i s . p _ i n i t = p _ i n i t ; t h i s . k = k ;
6 t h i s . lambda = lambda ; t h i s . max_n = max_n ;
7 A s s e r t . True ( p _ i n i t != k , " p _ i n i t and k c a n n o t have t h e same v a l u e ! " ) ;
8 }
9 p u b l i c vo id QuickCheck ( ) {

10 double s _ i = 0 ; double m_n = 0 ;
11 f o r ( i n t i = 1 ; i <= max_n ; i ++){
12 bool s u c c e s s = f a l s e ;
13 t r y {
14 Check . One ( c o n f i g , p r o p e r t y ) ;
15 s u c c e s s = t rue ;
16 } catch {}
17 double r a t i o = s u c c e s s ? ( k / p _ i n i t ) : ( ( 1 − k ) / (1 − p _ i n i t ) ) ;
18 s _ i = s _ i + Math . Log ( r a t i o ) ;
19 m_n = i == 1 ? s _ i : Math . Min ( m_n , s _ i ) ;
20 i f ( s _ i − m_n >= lambda ) {
21 Conso le . W r i t e L i n e ( " Change d e t e c t e d a f t e r "+ i +" sample s ! " ) ; re turn ;
22 }
23 } Conso le . W r i t e L i n e ( "No change d e t e c t e d a f t e r "+max_n+" sample s ! " ) ;
24 }
25 }

Listing 5. Implementation of change detection with a CusumProperty.

the past. A generator serves as a scheduler that randomly
selects a philosopher that should be executed or generates a
stop command when we know the outcome of a sample. The
generator is part of the FsCheck state machine specification
that serves as our simulation environment. Only one command
class is needed for this specification, which is responsible for
the execution of the model and also performs the evaluation
of our properties.

We checked the same quantitative properties as used for the
PLASMA-lab case study.

1) Is any of the philosophers hungry within 1000 steps and
after that will any philosopher eat within 1000 steps?

2) What is the probability that a given philosopher will eat
within 30 steps (for a table size of 150)?

We performed our evaluation in a virtual machine with 4 GB
RAM and one CPU on a Macbook Pro (late 2013 version) with
8 GB RAM and a 2.6 GHz Intel Core i5. The first property was
evaluated for different numbers of philosophers by applying a
Monte Carlo simulation with Chernoff-Hoeffding bound. The
parameter settings were as follows: ε = 0.003 and δ = 0.01,
which results in a sample number of 294,351. The property
was checked with our approach and with PLASMA-lab version
1.4.0 with the same parameters and thus the same number of
samples. The results are shown in Table I. For philosopher
tables with a small size our approach is slower than PLASMA-
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Fig. 3. State machine of a philosopher as presented for PLASMA-lab.

lab, but for a larger number of philosophers our approach
performs better. We assume the reason for this is that we can
check the property in a more efficient way. We do not always
check if all philosophers become hungry or are eating, we only
check the currently executed philosopher.

We checked the second property with a Monte Carlo
simulation with 30 million samples. The property was true for
29 samples, which means the probability is 9.6× 10−7. The
run time was 110 minutes. The results are similar to those of
PLASMA-lab. In contrast to them we used a smaller sample
number and we did not implement parallelisation.

Additionally, we checked two qualitative properties:
1) Is the probability that a given philosopher will eat within

50 steps closer to 0.1 or 0.15 (for a table size of 20)?
2) Can a change in the probability that a given philosopher

eats within 50 steps be detected, when the number of
philosophers rises? (We start with a certain number of
philosophers and add a philosopher every 300 samples.)

We checked the first property with the SPRT with value 0.01
for the type I and type II error parameters (α and β). The
result was that the alternative hypothesis H1 was accepted,
which means that the probability that a given philosopher will
eat within 50 was closer to 0.15.

The second property was evaluated with the CUSUM
algorithm with different initial numbers of philosophers. Ini-
tially, we performed a Monte Carlo simulation to obtain the
probability pinit for a constant number of philosophers. Then,
we adapted the original model so that a new philosopher

TABLE I
DINING PHILOSOPHERS RUNTIME COMPARISON FOR RISING TABLE SIZE

FOR PROPERTY 1. THE PROPERTY WAS ALWAYS TRUE.

#Philosophers Runtime [s] PLASMA-lab Runtime [s]
3 969 6
10 991 14
30 1031 47
100 1145 256
300 1538 2151
1000 2676 17057



TABLE II
DINING PHILOSOPHERS CUSUM EVALUATION WITH DIFFERENT INITIAL

NUMBER OF PHILOSOPHERS AND PARAMETERS.

Initial
#Philosophers pinit k

Change detected at
Sample #Philosophers

5 0.712 0.612 319 6
10 0.387 0.287 961 13
15 0.250 0.150 1072 18
20 0.157 0.057 1337 24

was added every 300 samples. We wanted to detect when
the probability is 10% below the initial probability, which
gives us the threshold k = pinit − 0.1. For the sensitivity
threshold, we selected the value eight, which was enough to
prevent false positives and we chose 5000 as a maximum
sample number. The results are shown in Table II. It can be
seen that a change can be detected quite fast, for example, for
five philosophers we can detect a change after 319 samples,
when the number of philosophers was increased to six. For a
higher initial philosopher number the CUSUM algorithm takes
longer, because the probability change was smaller when one
philosopher was added.

We compared our modelling style in the programming
language to the models defined for PLASMA-lab and noticed
several differences. PLASMA-lab needs separate models for
settings with different numbers of philosophers. We have
only one model that contains a parameter for the table size.
Furthermore, our model supports a dynamic change of the
number of philosophers. Another observation is the long
formulas in the PLASMA-lab models. The models contain
formulas that include variables for each philosopher, e.g.:
l a b e l " hungry " = ( ( p1 >0)&( p1 < 8 ) ) | . . . | ( ( pn >0)&( pn < 8 ) ) ;

For a model with 300 philosophers this quickly becomes
impracticable. This can be avoided with an abstraction layer
added to PLASMA-lab, e.g., by introducing a custom DSL [4].
In contrast, modelling in a programming language allows us to
formulate these (quantified) formulas with loops. Consequently,
in our object-oriented framework it is very easy to create
models and to adjust them to different settings. For example,
the philosopher case study was implemented within an hour
and it can be easily adjusted to different settings.

On the other hand, PLASMA-lab provides a nice graphical
user interface that helps the user to become familiar with the
SMC techniques. Moreover, it provides a helpful simulation
feature for debugging, which makes it possible to execute a
model step by step and inspect all variables.

B. Randomised Consensus Case Study

The second case study is the randomised consensus shared
coin protocol by Aspnes and Herlihy [5]. Our model is inspired
by a PRISM case study [22]. It is also a PLASMA-lab case
study, which is presented at its website.4 The protocol describes
an algorithm for achieving consensus among a number of
processes that can communicate with shared memory. The
protocol needs a constant parameter k that is required for the

4https://project.inria.fr/plasma-lab/examples/consensus-protocol
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Fig. 4. Simulation results for the property: can the protocol finish within B
steps for different k values and a process number of 10?

computation and influences the probability that the protocol
finishes within a certain number of steps B.

The results of our case study are presented in Figure 4. Each
data point in this figure was computed with a Monte Carlo
simulation with 1000 samples. The outliers could be avoided
with a bigger sample number. We performed simulations with
PLASMA-lab in order to compare our results. The results of
our SMC approach are consistent with the results obtained
when running PLASMA-lab.

Additionally, we applied the SPRT in order to check the
following property: is the probability that the protocol finishes
within 500 steps closer to 0.2 or 0.3, when we consider k=2
and ten processes? We used the value 0.01 for the type I and
type II error parameters (α and β) and the result was that the
null hypothesis H0 was accepted, which means that the value
is closer to 0.2.

C. Bluetooth Case Study

We performed the third case study for a device discovery
phase of Bluetooth, which is a wireless telecommunication
standard [27]. This standard tries to avoid interference problems
by applying a frequency hopping scheme. For this scheme the
devices use pseudo-random jumps between common sets of
frequencies. Figure 5 illustrates the phases of the scheme. It
can be seen that there is a scan state, in which devices are
listening for requests. When a request is received by a device,
then it enters a reply state, where it answers a request after two
time slots. (A time slot has a duration of 312.5µs.) Then, the
device must wait for a random number of time slots. After this
waiting time, the device goes back to the scan or the sleep state.
In the scan state a device can also start a sleep state to reduce
the energy consumption, when no request was received. The
case study was originally presented for PRISM [11] and later
also for UPPAAL-SMC [10]. We based our implementation on
the PRISM model. Compared with our previous case studies,
the model was more complex, because it has a number of
different modules which interact through synchronisations.
PRISM models support synchronized actions, which enable

sleep

2048 slots

scan

36 slots

reply

2 slots

wait

Rand(0...127) × 2 slots
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reply

Fig. 5. Bluetooth device discovery as presented for PRISM [11].
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Fig. 6. Bluetooth evaluation results for the property: what is the probability
that we can observe k replies within a specified time?

two or more modules to perform actions simultaneously. The
model comprises modules for a sender, a receiver and for the
frequency calculation. For our model implementation we had
to add functionality for the synchronisation. This was done
by executing the corresponding actions on all modules when
they were part of the synchronisation and we also had to make
sure that the variable updates during these actions had no
influence on the guards of the other executed actions. The rest
of the implementation was similar to the one for the dining
philosopher case study.

We checked the following properties:
1) What is the probability that we can observe k replies

within a specified time?
2) What is the probability that the receiver sleeps at most s

times until we observe k replies?
We performed a Monte Carlo simulation with 10000 samples
to check the first property. The results are shown in Figure 6.
It can be seen that the data points have a stair-like structure.
This is because of the sleep phases, which occur at certain
probabilities and cause a sharp increase of the required time.

The second property was checked with a Monte Carlo
simulation with Chernoff-Hoeffding bound with ε = 0.01 and
δ = 0.01, which gives us a sample number of 26,492. Table III
shows the results for this property. We performed the evaluation
until we observed k replies and we checked in how many cases
we can observe this number of replies before the receiver sleeps
s times. As expected we see an increase of the probability
of observing k replies, when the number of allowed sleep
phases rises. The results we obtained for both properties were
corresponding to the results of the case study from PRISM.
Hence, our approach could also reproduce the simulation of a
more complex stochastic model.

Furthermore, we performed an evaluation with the SPRT

TABLE III
BLUETOOTH PROPERTY: WHAT IS THE PROBABILITY THAT THE RECEIVER

SLEEPS AT MOST s TIMES UNTIL WE OBSERVE k REPLIES?

Max Sleep
Count s

Probability of Finishing [%]
k = 1 k = 2 k = 3

0 52.733 51.853 50.812
1 65.895 64.593 61.426
2 77.28 75.664 71.308
3 86.147 84.569 79.613
4 94.821 92.126 87.411
5 97.505 94.957 91.462
6 100 97.947 96.018
7 100 98.773 97.780
8 100 99.649 99.245

TABLE IV
BLUETOOTH PROPERTY: IS THE PROBABILITY THAT WE CAN OBSERVE k

REPLIES WITHIN A CERTAIN TIME CLOSER TO x OR y?

Time (sec) H0 : p0 = x H1 : p1 = y
Accepted Hypothesis

k = 1 k = 2 k = 3
1 0.6 0.65 H1 H1 H0

2 0.8 0.85 H1 H1 H0

3 0.85 0.95 H1 H1 H0

in order to check the property: is the probability that we can
observe k replies within a certain time closer to x or y? We
used the value 0.01 for α and β and we checked the property
for different time limits and values for x and y. The results
are shown in Table III.

VI. CONCLUSION

We have demonstrated that statistical model checking can be
quite easily integrated into a property-based testing framework.
We have implemented four commonly used SMC algorithms
in the form of SMC properties and evaluated them on standard
examples from the literature: the dining philosophers, a
randomised consensus shared coin protocol and a Bluetooth
device discovery protocol. The results are encouraging. The
case studies revealed that our approach enables the definition of
stochastic models and properties in a high-level programming
language, which provides some benefits in the modelling style
and is easier to use for developers who are not familiar with
(temporal) logics.

The elegance of our integration is due to the fact that our new
SMC properties take a classical property to be checked as input
parameter. This results in a very flexible SMC approach where,
e.g., state-machine properties as well as algebraic-properties
can be checked.

In our previous work [2], we demonstrated that our SMC
properties also support the conformance testing of implemen-
tations with stochastic failures against a correct model. This
allows the assessment of the failure probability. In contrast
to this statistical conformance analysis, here we focused on
classical SMC and presented an optimized approach that utilizes
only the model part of a state-machine property.

In the near future, we intend to utilize this method for load-
and performance testing. For example, we will analyse the
average response time of an industrial web-service applica-
tion [1] under different user profiles. Our vision is to transfer
this technology to our industrial partners. The fact that SMC
algorithms can be represented as SMC properties inside a PBT
framework should make statistical model checking accessible
to test engineers already familiar with PBT.
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