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Abstract: Although Model-Driven Engineering has proven to be an adequate solution for increasingly complex 

engineering problems, its industrial adoption still remains limited. We argue in this paper that an important 

factor in regard to a failed introduction of MDE methodologies is still a blurry conception and insufficient 

distinction between applying MDE conceptually and introducing it into legacy-dominated industrial 

environment. We further argue that the MDE introduction process can be significantly facilitated by the 

application of so-called MDE micro injections, especially in agile development environments. Finally, we 

substantiate our arguments by presenting a case study of three industrial research projects, which illustrates 

the effectivity of MDE micro injections. 

1 INTRODUCTION 

More than ever, industry faces the challenge of rising 

complexity in many application fields. While this 

complexity rise is even accelerating, the provided 

time span for the introduction of new technologies to 

master the current complexity levels shortens 

drastically. Consequently, managing complexity by 

introducing sophisticated but lightweight 

development methods and technologies is more 

essential than ever before. Since more than two 

decades, model-driven engineering (MDE) aims at 

providing concrete solutions, which promise finding 

the right level of abstraction, a separation of concerns, 

as well as improving reuse in model-based software. 

In contrast to these intentions, however, there is an 

ongoing debate in the modelling community: Why is 

industrial adoption of MDE – despite the obvious 

needs – still limited? Why are other mitigation 

strategies such as agile development methods (which 

are by no means contradictory to MDE) favoured to 

tame the perceived development complexity? 

We claim in this paper that one root cause for this 

situation lies in a blurry conception and missing 

distinction between applying MDE (e.g. the act of 

modelling) and introducing MDE (e.g. learning a 

modelling language such as UML, choosing right 

levels of abstractions, etc.). Within an ideal 

environment for applying MDE, modelling principles 

have been established from the very beginning by a 

team of enthusiastic and well-educated modelling 

advocates and corresponding solutions have always 

been model-based. In industrial practice, however, 

such an ideal environment is rather exceptional. For 

instance, legacy practices often cause important 

barriers to introducing MDE. Socio-cultural issues 

associated with a methodology shift from traditional 

engineering to MDE further contribute to these 

difficulties. In addition, while agile development 

environments are not contradictory to the application 

of MDE, we claim however that they add to the 

challenges of introducing MDE, which are often 

underestimated or neglected in modelling theory. In 

this paper, we thus promote an MDE introduction 

strategy called MDE micro injections, which has been 

initially published in (Stieglbauer & Rončević, 2017). 

The intention of the method is to reduce the gap 

between an ideal application and a practical 

introduction of MDE within an agile industrial 

environment related to legacy solutions. Since we 

focused in (Stieglbauer & Rončević, 2017) more on 

theoretical and methodological aspects of MDE 



 

micro injections, we are reflecting in this paper on 

three concrete research projects (covering a period of 

more than six years), which contribute significantly 

to the idea of MDE micro injections. 

Table 1: Different aspects of MDE applied in the 

corresponding research projects. 

 Application 

of MDE 

Introduction 

of MDE 

UX 

Aspects 

TRUFAL    

TRUCONF   initially 

DLUX    

 

The associated research projects all refer to the 

same use case of establishing an automated test case 

generation process for measurement devices in the 

domain of automotive testbeds. All three projects are 

related to MDE approaches to generate test cases but 

differ concerning their focus on MDE application vs. 

introduction (see Table 1). The central idea of the 

TRUFAL project1 (2011-2014) was the application of 

UML modelling techniques on a mutation-based 

testing methodology. While the value of the applied 

methodology was successfully proven (Aichernig, et 

al., 2014) the industrial adoption of the modelling 

techniques remained limited. Reasons for this limited 

adoption were analysed in the follow-up research 

project TRUCONF2 (started 2014). Many of these 

reasons pointed towards difficulties in introducing a 

generic modelling language for a very particular 

application field. Consequently, a DSL-based 

approach was favoured in the TRUCONF project to 

overcome the observed difficulties. However, it soon 

turned out that a good overall user experience (UX) is 

essential when considering the introduction of the 

DSL. Due to a lack of well-established methodologies 

for analysing the user experience for DSLs, the 

DLUX3 project (started 2017) was initiated to put 

more emphasis on UX aspects in terms of empirical 

evaluations related to the MDE introduction process 

and the applied modelling tools. 

2 MDE MICRO INJECTIONS IN A 

NUTSHELL 

Agile development and continuous integration 

methods have shortened development cycles, so-

called sprints (associated with concrete submission 

deadlines), from months to weeks, sometimes even 

days. These methods were designed to handle 

 
1 https://trufal.wordpress.com/ 
2 http://truconf.ist.tugraz.at/ 

complexity by relying on flexible adaption of 

intermediate goals on a daily basis. If a concrete 

outcome and its practical application fails to meet the 

expectations (e.g. due to a lack of knowledge of the 

overall system), this is instantaneously recognized 

(e.g. by test automation) and corrected during the next 

iteration. This method has been accepted as common 

practice in today’s industry, regardless of the 

discussion whether such an approach favours short-

term aspects over long-term goals, if not carefully 

applied and supervised by dedicated system 

architects. MDE approaches should be of special 

interest for such architects, since corresponding 

abstraction layers structure the long-term goals on the 

one hand and simplify the implementation phase on 

the other hand. Many existing MDE tools, however, 

originate from a past golden tool era when agility was 

by far less dominant and waterfall approaches were 

state-of-the-art. A rapid tool-introduction was not at 

the top of an MDE tool vendor’s requirement list and 

the acquisition of sufficient theoretical and 

methodical knowledge was less of a strain on the 

users’ weekly schedules than it is today. 

Consequently, many MDE tools were not 

intentionally designed to adhere to agile tool 

introduction sprints. Moreover, adapting them to the 

changed conditions has turned out to be challenging 

due to legacy issues of an aged code base and a 

significant drop of investments on the tool market 

(Bordeleau & Edgard, 2014). As one consequence, 

the affected developers primarily perceive the 

introduction of an MDE tool as a threat against their 

upcoming deadlines rather than a relief from their 

actual troubles caused by raising complexity. 

 

 

Figure 1: Paradigms and characteristics of MDE micro 

injections. 

The intention of MDE micro injections is to 

circumvent these issues by several paradigms and 

characteristics which are summarized in Figure 1. 

3 https://dlux.wu.ac.at/ 
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One paradigm of MDE micro injections is to enhance 

classical MDE application scenarios by agile MDE 

introduction strategies. Another one is a clear 

separation of roles: potential model-driven 

developers (i.e. MDE end-users) versus the role of 

modelling advocates or - as we call them in this paper 

– the micro injection designers. Essential capabilities 

of these micro injection designers do not only 

comprise a good knowledge about modelling theory 

and its application fields but also includes a strategy 

about the agile introduction of MDE. While classical 

MDE theory favours abstraction, separation of 

concerns and re-usability as primary concepts, a 

micro injection designer has a deep understanding in 

these issues but focuses on other topics concerning 

the introduction of MDE: First, she or he takes care 

about splitting the MDE introduction process into 

tranches and ensures that each tranche can be 

realistically applied and completed within one 

development sprint of the corresponding target group 

of end-users. Second, the injection designer aims to 

maximize the overall user experience for the end-

users - especially during an MDE introduction 

process.  

We want to emphasize that the term user 

experience includes but goes far beyond the notion of 

tool usability but comprises as well socio-cultural and 

psychological aspects. A good user experience should 

minimize negative emotions (e.g. not endanger an 

upcoming deadline or cause fear about loss of 

control) but should maximize positive ones (e.g. 

solving a concrete problem immediately within the 

actual sprint). 

Figuratively, the skills of a micro injection 

designer are reflected by the following 

characteristics of MDE micro injections: first, these 

injections must have a viral effect. Corresponding 

MDE approaches must become desirable to potential 

end-users so that they propagate the approach 

autonomously, once the injection designer has 

‘infected’ a critical mass. A good user experience 

supports desirability.  

Despite its infective potential, however, particular 

MDE injections must be given in small doses to 

minimize possible side effects such as negative 

emotions and other hindering social-cultural effects 

like the ‘not-invented-here-syndrome’. This 

syndrome is a common reaction to not yet established 

innovations, which have not been created by the 

target group but should be realized by them. 

However, the syndrome can be cured by the injection 

designer via a careful selection of early adopters from 

the target group, who are the first in line to gain the 

laurels of success from the management in case of a 

successful MDE adoption.  

Independent from its small doses, the MDE micro 

injection is highly concentrated to maximize its 

effectiveness. Instead of a time-consuming design 

phase for an overall cross-product and company-wide 

MDE approach, potential islands of success should be 

detected, analysed and low-hanging fruits should be 

prioritized. A valuable indicator of a low-hanging-

fruit is if a corresponding MDE approach increases 

the level of automation (e.g. by using test 

automation). To ensure effectivity, small but 

coordinated teams should bring up initial solutions by 

using rapid prototyping (e.g. model editor 

generation). 

However, (separated) islands of success must not 

contradict another characteristic: high pureness of an 

MDE micro injection should avoid any violation of 

MDE principles. Besides selecting the right level of 

abstraction and applying separation of concerns 

where feasible, composability of the various islands 

of success is an essential requirement, especially if 

the islands grow in size and prospectively merge to 

bigger ones. The best individual solutions will not be 

sustainable if they are incompatible with other ones.  

Furthermore, sustainable growth of the islands 

can only be assured by a long-term support of the 

involved management stakeholders. What managers 

require for their support, however, are concrete 

numbers. Thus, the effect of each small MDE micro 

injection must be measurable. Corresponding 

measurements may be done by empirical evaluation 

(e.g. user experience studies) or by competing parallel 

solutions, one using a traditional approach, while the 

other is based on an MDE approach. The measurable 

comparison criteria for competing solutions may be 

development speed, code quality (e.g. bug fixing 

benchmarks, test coverage, etc.) or requirement 

fulfilment rate. To provide expressive numbers, the 

MDE-approach-related benchmark must be 

normalized in terms of initial overhead, which shall 

be taken into account during the introduction phase.  

However, even if it is subtracted from the 

benchmark, this overhead must not be neglected and 

has to fulfil the overall MDE micro injection 

paradigm: A single injection action and analysis of its 

impact must be feasible within one development 

sprint. Otherwise, the effectiveness of the MDE 

micro injection will be significantly diminished 

independent from the chosen concentration factor: the 

MDE prototype solutions will be significantly 

inferior to the previously established solution and the 

expressiveness of the measured impact is degraded 

and blurred again. 



 

3 USE CASE: MODEL-BASED 

TEST CASE GENERATION 

FOR MEASUREMENT 

DEVICES 

AVL is the world’s leading company in providing 

instrumentation and test systems to the automotive 

industry and other domains in form of automotive 

testbeds. A testbed is a complex system of systems 

exhibiting a tremendous variety, depending on the 

customer’s requirements. For instance, a testbed for 

engine testing consists of more than 70 different 

subsystems, including measurement and conditioning 

systems for fuel, air, oil, exhaust, coolant and 

electricity. Consequently, each testbed variant needs 

to be tested extensively to eliminate any side-effects 

caused by the integration of its subsystems.  

The use case addressed by the mentioned research 

projects covers a specific class of subsystems, i.e. 

measurement devices. These devices are used to 

measure specific quantities of the unit under test (e.g. 

a combustion engine), for instance exhaust gas 

concentrations or fuel consumption. All subsystems 

of the testbed are controlled by a testbed automation 

software called PUMA Open. For each new software 

release, about 50 different measurement devices 

undergo various integration tests to ensure 

compatibility with the testbed automation system. 

This is traditionally done by applying a series of test 

suites to the PUMA Open software objects which 

encapsulate the connection to the individual 

measurement devices. A more detailed description of 

the measurement device testing process can be found 

in (Auer, 2014). For each individual device, the 

testing process requires a minimum effort of one 

person-day. This relatively big effort is partially 

caused by the issue that test suites are mainly written 

and maintained at coding level (i.e. using Visual 

Studio and NUnit), which burdens the test engineers 

with the time-consuming and error-prone tasks of test 

suite maintenance and ad-hoc test coverage analysis.  

We aim to mitigate these shortcomings by 

introducing a model-driven testing methodology to 

the measurement device testing process. The testing 

methodology is based on a mutation-based testing 

approach, which has been developed4 during the 

TRUFAL project (Aichernig, et al., 2014) and was 

further improved by the TRUCONF project (e.g. by 

including testing of non-functional requirements). 

 
4 Development on the model-based testing approach started 

in an earlier project, in which AVL was not involved. 

See http://www.mogentes.eu/ 

The methodology requires the test engineer to create 

a behavioural model of the measurement device under 

test. The model serves as an input to a mutation-based 

test case generator, which is used to generate the 

NUnit test suites per a mutation coverage criterion. 

Due to this methodology shift, we intend to 

significantly decrease test suite coding and 

maintenance effort, while increasing test quality and 

coverage using mutation-based testing. 

4 EVALUATING THE TRUFAL 

PROJECT AGAINST THE IDEA 

OF MDE MICRO INJECTIONS 

The TRUFAL project (2011-2014) was a research 

project, which aimed at the development of an 

efficient model-based test case generation 

methodology for highly complex systems. On AVL 

side, measurement devices were chosen as case 

studies. The focus was on efficiently finding 

implementation faults, which violate the functional 

specification. At the time when the project was 

started, functional testing was done either by 

performing manual tests on corresponding user front-

ends or by writing unit tests on the level of the 

device’s communication protocol. Testbed 

components such as measurement devices are not 

manufactured in form of mass production but are 

high-end devices for professional industrial use, 

available in many variations and combinations. 

Consequently, device testing is an expensive task in 

general, especially if combinations of variations of 

these devices must be tested. To make this kind of 

integration tests affordable, AVL has already 

developed device simulators before the TRUFAL 

project was started. However, it was the intention of 

the TRUFAL project to elaborate on a next step 

regarding cost reduction and efficiency improvement 

after device virtualization and simulation: On the one 

hand, manual testing should be superseded by an 

automated method, whereas each test is reproducible 

at any time, e.g. if a new variant of a device has been 

introduced or a different combination of device 

variants must be integrated. On the other hand, a 

model-based approach was introduced to raise low-

level unit test programming to a much higher level of 

abstraction. Test models were intended to encode the 

intended functional behaviours from which a test case 



 

generator derived the (formerly manually written) 

unit (or integration) tests. To improve the efficiency 

of this model-based testing approach even beyond the 

classical introduction of abstraction, the principle of 

mutation-based testing was applied. Here, the test 

models are slightly modified by a mutation algorithm. 

Afterwards, the test case generator produces test 

sequences which uncover observable deviations in 

the behaviour of these mutants. The intention of this 

approach is to improve testing efficiency by 

increasing the test coverage rate for the generated test 

cases in comparison to a more straightforward 

mapping of the test model to a test suite. More details 

can be found in (Aichernig, et al., 2014), where the 

approach as such has been verified successfully. For 

instance, the quality and efficiency of several types of 

auto-generated test suites has been evaluated and a 

more efficient mutation-based test case generation 

algorithm with a significantly reduced runtime has 

been developed (Jöbstl, 2014). 

Despite its illustrated usefulness, however, the 

industrial adoption of the approach remained limited. 

An obvious indicator was the low number of 

modelled devices during the project and the amount 

of time needed to correctly specify a device model. 

For instance, the creation of an initial model took 

roughly 12 hours, followed by an additional 40 hours 

for fine-tuning and bug-fixing. This estimate does not 

include the effort of familiarizing oneself with the 

overall model-based testing approach, as well as the 

modelling tools, which took 6 additional hours. This 

was despite the use of a standard modelling language 

(UML) and a standard compliant tool (Papyrus).  

In the following, we are analysing possible root 

causes of the limited adoption by evaluating the 

applied methods of the TRUFAL project against 

some of the MDE micro injection paradigms and 

characteristics. First, we raise the question if there 

was a clear separation of the application and the 

introduction of the TRUFAL methodologies. One 

could argue that this separation was indeed present 

for the following reason: a team of modelling 

advocates put reasonable effort on the definition of 

the right abstraction for device modelling to fit the 

requirements of the mutation-based test case 

generation approach. Only due to their expertise, an 

adequate level of abstraction was found to fulfil the 

project’s aims of automated, reproducible test-case 

generation with reasonable test coverage. So, the 

baseline for a successful application was set. 

However, is such a baseline enough for a successful 

introduction? 

To answer this question, we examine the 

desirability of the approach. In case of the TRUFAL 

project, this examination remains inconclusive, since 

the end-users have neither been interviewed, nor were 

otherwise involved in the design phase. Instead, they 

were confronted with model structures, which fulfil 

the requirements of the test case generator to enable a 

successful evaluation of mutation-based test case 

generation methodology but not necessarily reflected 

the test engineer’s way of thinking. This led to 

scepticism against this approach, which is quite the 

opposite of desirability. One could argue that 

corresponding modelling courses would bridge this 

gap, another could argue that it is still advisable to 

minimize the gap by a more suitable language design. 

However, since this was considered to be outside the 

scope of the TRUFAL project, the corresponding 

MDE injection has turned out not to be very viral. 

If the MDE injection was not viral, did it at least 

fulfil the characteristic of small doses to avoid 

negative side-effects? In case of the TRUFAL 

project, the test models have been based on UML 

state machines and class diagrams, which were 

implemented in the UML modelling tool Papyrus. 

However, it was as well beyond the scope of the 

project to analyse, which subset of these UML 

diagrams would be sufficient for test case generation 

(e.g. by applying a UML profile) or how Papyrus 

needs to be tailored (e.g. limiting menu entries to 

those needed by the involved diagram types). 

Consequently, the end-users were confronted with a 

full-fledged UML tool. Due to the feature-richness of 

both the tool and the UML language they had to learn 

the semantics of UML first and map their intuitive 

view of individual device tests to an appropriate UML 

representation using the correct tool features. 

Additionally, the underlying test case generator 

required some additional model features (specifically, 

class diagrams) to specify the test interface. The end-

user had to be aware of all these issues in order to 

create a test model suitable for test case generation. 

Any mistake led to an obscure failure of the test case 

generation process, the root cause of which was hard 

to evaluate. Due to limited user guidance by the 

model editor, considerable efforts were needed to 

train the end-users, which contradicts the MDE micro 

injection characteristic of a small dosage. Incorrect 

models and misinterpretations of model semantics 

caused frustration and led to the subjective 

impressions among the test engineers that MDE 

introduces complexity rather than diminishing it. 

Due to the lack of a UML profile, it could be 

argued that defining one would have avoided this 

situation. However, defining such a profile does not 

intrinsically imply that the right elements are selected 

and, even if so, that the semantics of the profile 



 

becomes understandable out-of-the-box to the end-

users. Furthermore, even if the profile seems to be 

appropriate objectively, the end-user’s subjective 

impression may vary significantly. Related to our use 

case, test engineers have to rely on a particular 

amount of information about a measurement device 

(e.g. device documentation, requirement 

agreements5). It may be quite difficult for them to 

perform the mental process of translating this 

information to the semantics of a correct model, even 

if a UML profile has been applied. If this translation 

process is not considered during languages design, 

the efficiency of the modelling process decreases 

significantly. At this point, the importance of a 

careful domain specific language design becomes 

apparent. According to our experience, it is not 

sufficient that a UML profile (or any other DSL 

variety such as a grammar for a textual DSL) is 

applied but how such a profile is designed (in close 

collaboration with the end-users) to create ‘real’ 

domain-specific languages. 

Since a UML standard compliant tool such as 

Papyrus was used, one could argue that the MDE 

injection must be at least very pure and no MDE 

principles could have been violated. Nevertheless, we 

observed several MDE principle violations. If 

considering the principles of a proper abstraction 

level and separation of concerns with the intention to 

reduce complexity, the resulting measurement device 

models were surprisingly complex - not only in terms 

of comprehensibility but also in terms of their size. 

Consequently, even a modelling advocate, who was 

actively involved in the research project, had to spend 

considerable time to produce a suitable device model. 

One reason for this was the involvement of several 

interdependent state machines. In case of the 

interdependent state machines, a state switch in one 

state machine may cause a series of state switches in 

other state machines. Although these 

interdependencies were following a certain repetitive 

scheme, they were not classified as primary language 

constructs. Instead of separating them from the 

remaining model, these relations have been modelled 

rather implicitly and through several model elements 

spread over the entire model. 

Apparently, we failed to meet almost every 

characteristic of the proposed MDE micro injections 

in the TRUFAL project, which in our view caused the 

very limited practical adoption despite the proven 

usefulness of the model-based testing approach. Since 

the applied MDE injection was neither viral nor small 

 
5 This information may be created by another department 

and (due to several company-depended restrictions ) 

in terms of a micro injection nor highly concentrated 

nor very pure, the measurable impact was very low 

or even non-evaluable, not only because we tried to 

replace a complex traditional methodology with a 

complex modelling approach, but also because the 

introduction of the chosen approach was by no means 

feasible within a corresponding development sprint. 

This not only prevented concrete empirical 

evaluations of the practical impact of the approach, 

but made a comparison of the traditional and model-

based approaches impossible: Keeping the model 

consistent with the weekly updates of the traditional 

approach was hard to achieve. Consequently, the 

model-based approach always remained inferior to 

the traditional one, which negated its claimed effects 

(such as complexity reduction) and promoted 

scepticism among the potential end-users. 

5 APPLYING MDE MICRO 

INJECTIONS DURING THE 

TRUCONF AND DLUX 

PROJECTS 

5.1 Establishing the Role of a Micro 
Injection Designer 

After a successful evaluation of the TRUFAL test 

case generation methodology itself (independent 

from its industrial adoption rate), the TRUCONF 

project (started 2014) is intended to enhance the 

applied methodology by supporting non-functional 

requirement testing (e.g. by including performance 

constraints) on the one hand but also has a strong 

focus on overcoming the limited industrial adoption 

of the TRUFAL results by applying some of the 

paradigms and characteristics of MDE micro 

injections. A dedicated role of an MDE micro 

injection designer was established in the TRUCONF 

project.  

The injection designer began a process of 

acquiring the end-users’ domain knowledge more 

deeply through close but non-intrusive interaction. 

This action was strongly supported by the team leader 

of the test engineers, which turned out to be essential 

to establish short meetings on a regular basis with 

motivated participants. The injection designer soon 

found out that many test engineers had a similar 

structure in mind when they were designing test 

cases. Due to a lack of modelling skills, however, 

cannot be modified to better comply with the intended 

model semantics. 



 

they were not able to formalize or communicate this 

in form of a precise semantics. Due to the obvious gap 

between the model semantics applied in the TRUFAL 

project and the input gained from the test engineers, 

the injection designer investigated, which publicly 

available model languages had the potential to 

diminish this semantic gap. It turned out that the 

language Gherkin6 was a good candidate for the use 

as a language baseline. In one particular case, it even 

turned out that a test engineer invented languages 

similar to Gherkin to keep track of the tests with pen 

and paper. 

The injection designer continued closing the gap 

by further interviews through which he evolved an 

initial version of the so-called Measurement Device 

Modelling Language (MDML, more details can be 

found in (Burghard, et al., 2016)). Each sprint period, 

the injection designer came along with a concrete 

modelling tool prototype for MDML, which has since 

been updated for each iteration. This prototype made 

a rather abstract semantics more obvious to the end-

users and initial hands-on sessions gave them the 

experience of a deep language design involvement, 

where fears (e.g. of a loss of control) were no longer 

an issue. Due to the short duration of each iteration, 

the Eclipse Xtext framework7 was used to create rapid 

prototypes of a textual DSL editor. Using the Xtext 

core features to generate a model editor, a data model 

and a model parser led to already quite mature results 

(e.g. syntax highlighting and code completion), which 

were very attractive to the end-users. 

The rapid prototyping facilities of the Xtext 

framework significantly supported the step-wise 

introduction of MDML using tiny doses of MDE 

injections at an early state of the collaboration, which 

turned out to be very viral, since the test engineers felt 

involved but not threatened by the evaluated MDML 

approach and continued on their own to spread the 

discussed ideas to other test engineers. Rapidly 

changing and updating the prototypes according to 

their input was an essential catalyst and important to 

establish trust between the injection designer and the 

test engineers. This trust was strengthened due to the 

fact that the prototypes gave them a concrete 

impression of the future implementation of the 

model-based testing approach, as well as of the 

straightforward and understandable tooling. 

 

 
6 https://cucumber.io/docs/reference 
7 https://www.eclipse.org/Xtext/ 

5.2 User Experience on Spot: DLUX 

The positive feedback of the test engineers during this 

early design phase emphasizes the importance of user 

experience (UX) aspects during the introduction of 

MDE approaches. As sketched in the previous 

section, user experience aspects go far beyond tool 

usability. Although tool usability was already kept in 

mind, simplifying the mental mapping process from 

existing workflows to a corresponding model 

representation was the essential breakthrough in 

terms virality and desirability. To address user 

experience systematically, beyond the scope of 

TRUCONF, led to the DLUX project (User 

Experience for Domain-specific Languages). DLUX 

has a two-fold purpose: First, it should be examined 

whether a generic evaluation-method kit for assessing 

and improving the user experience of DSLs can be 

developed in support of MDE-related activities at 

AVL (including TRUCONF). Second, the 

evaluation-method kit should be applied on selected 

use cases (MDML). Regarding TRUCONF, the 

selected use case was the modelling and test case 

generation process of a particular measurement 

device8 using MDML. For this use case, the following 

sub-aspects of UX have been investigated:  

(1) How do the test engineers locate and collect 

the required information about the involved device? 

How do they judge the relevance and quality of their 

data sources?  

(2) How do the engineers map the collected 

information mentally to their (potentially sub-

conscious) semantics and workflow structure? What 

are the perceived difficulties of this mapping process? 

(3) How are their semantics and workflow 

structure represented in the current MDML 

prototype? 

(4) How do they perceive the usability of the 

concrete MDML tool prototype?  

(5) Regarding the generated test cases, is the end-

user sufficiently informed about their properties and 

the related test-case coverage?  

(6) What happens if test case generation fails? 

How likely is a discontinuity of the modelling process 

and a disruptive fallback to manual testing? 

(7) How can the cause of the failure (e.g. due to a 

tool bug vs. due to an invalid model) be examined? 

Which kind of support should be established to 

overcome the issues successfully? 

8 Specifically, the AVL Micro Soot Sensor (AVL List 

GmbH, 2015) 



 

 (8) How can sufficient test reports be created, 

once test case generation and execution has 

terminated successfully? 

 

Figure 2: Series of heuristic walkthroughs in DLUX. 

At the time of writing this position paper, the 

issues 1) to 6) have already been partly evaluated in 

the DLUX project. The evaluation has happened 

through a series of heuristic walkthroughs 

(Mahatody, et al., 2010) of the MDML prototype, 

with test engineers taking the role of tool evaluators. 

The 2-hrs walkthroughs consisted of pre-tests, a task-

based tool walkthrough, a tool assessment based on 

UX heuristics, and a post-interview (see Figure 2). 

The activities were recorded, transcribed, and 

analysed. The results were forwarded to the injection 

designer, on the one hand, but also to the interviewees 

to strengthen their involvement, on the other hand. 

Overall, the modelling tool and language was well 

received regarding user guidance vs. degrees of 

freedom, minimalistic design, flexibility and 

efficiency. However, the evaluators expressed the 

need for improved documentation, authoring support, 

validation, and error mitigation. Furthermore, means 

to access materials (e.g., device handbooks) required 

during the modelling process should be made 

available from within the tool. 

5.3 Ensuring Composability, Data 
Integration and Re-Use 

In this section, we elaborate on selected intermediate 

DLUX results and examine their relations to MDE 

micro injections. We established high pureness as a 

characteristic of MDE micro injections, as well as 

right level of abstraction, separation of concerns, 

data re-use and composability as corresponding 

requirements. When examining UX aspect 1) (“How 

do test engineers collect the required information?”), 

it turned out that test engineers often do not have the 

necessary access to primary data sources on 

measurement devices and/or prefer other sources, 

which are easier to access but provide lower quality 

in terms of completeness and correctness. In case of 

the measurement devices, this led to inconsistent 

naming conventions for state labels and state 

dimensions, incomplete and/or contradictory 

specifications in edge cases as well as a prevalent 

sense of confusion about the correctness of particular 

device models or tests. 

The needed device information is mostly created 

by the device-firmware developers. However, this 

information source is barely accessible for the 

following two reasons: First, information is 

commonly kept deep inside the firmware code and the 

corresponding documentation as a common source of 

information is not always kept perfectly up-to-date. 

Second, integration test engineers and firmware 

developer work in different departments, which 

turned out detrimental to communication flows. The 

MDE efforts in TRUCONF and MDML form part of 

a broader consolidation process towards inter-

departmental data exchange and reuse (Stieglbauer & 

Rončević, 2017). A so-called Device Knowledge 

Base (DKB) was established. The DKB contains 

primary information such as device states and device 

commands, which needs to be shared across 

departments. In this case, the requirements for sharing 

data drives the definition of the meta-model of the 

DKB and lead naturally to an adequate level of 

abstraction. Public interfaces to the DKB based on 

this abstraction (e.g. to enable data web-frontends) 

give the test engineers direct access to primary device 

data, rather than having them resort to secondary data 

sources (manuals). The DKB turned out to act as a 

promising and straightforward method of finding the 

right level of abstraction for the involved models and 

the meta-model design.  

Regarding the MDML tool, automated data 

integration and re-use was established in the 

following way: On the one hand, the MDML editor 

allows for creating model skeletons. These include an 

interface definition based on the device’s name, 

firmware version, commands and states. In addition, 

auto-completion and tool-tip information can be 

provided. This is because, the DKB provides a certain 

amount of semantic information (e.g. the purpose of 

a particular command). These improvements are 

likely to increase the efficiency of writing device tests 

since the UX evaluation in DLUX has shown that test 

engineers spend more time on searching and 

navigating data sources than on the actual modelling 

task. 

In DLUX, micro injections are applied in parallel 

to a second use case relevant for firmware 

development (a detailed description of this use case 

would go beyond the scope of this paper). This 

parallel application matches the idea of separation of 

concerns, since the model design for both areas focus 

on specific needs of the corresponding end-users to 



 

maximize their UX: Consequently, firmware models 

are partly comprised of different model components 

compared to test models but also consist of common 

elements. If both approaches thus remain entirely 

separated and – even worse – would be incompatible 

due to using different semantics of their common 

language constructs (such as device states) the MDE 

micro injection characteristic of composability would 

be violated. Therefore, elements such as a device state 

used in both models are based on the same semantics 

(e.g. as defined for UML state diagrams). 

Furthermore, it was ensured that these common 

elements are editable only in one model (the primary 

source of truth), whereby references to them are used 

in the other model. In case of device states, the 

firmware model is the primary source, while the test 

model uses states only as references. Corresponding 

activities of the involved injection designers and 

cross-department system architects are required to 

ensure this compatibility. Only then, composability of 

MDE approaches becomes guaranteed, which enables 

effective and even automated data re-use and data 

forwarding across company departments. 

5.4 Success Factors and Measurable 
Impact 

In this section, we sketch further success factors 

derived from improving the UX aspects (2) – (4) and 

their measurable impact, where applicable. Through 

the iterative coordination with the test engineers, the 

language meta-model and semantics had soon settled 

into a form which was well suited to their 

understanding of the application domain, as well as to 

their intuitive modelling workflow. 

First, they collect information about the involved 

device states and device commands for a specific 

measurement device. In the ideal cases, this 

information can be entirely imported from the DKB 

at the time of model creation as described in the 

previous section. In order to complete this 

information in alignment with their mental model of 

test case definitions (2), they look for corresponding 

state machine and/or command descriptions in related 

requirement documents and user manuals. Based on 

these two sources, the test engineers populate a 

corresponding MDML model with the corresponding 

behavioral information (3). They experience this 

process as quite straightforward, since - due to the 

design of MDML – populating the model is feasible 

in small incremental steps and meaningful test cases 

can even be derived in early states of the modelling 

process. The only significant impediment is caused 

by contradictory information still present in some of 

the non-re-usable source material. Generally, the test 

engineers perceive UX of the language and tool 

prototypes in their current state to be well-tailored to 

their purpose, but still flexible enough to ensure an 

efficient modelling process (4). The efficiency is 

further increased, if the tooling would actively 

suggest meaningful model examples depending on 

the given device. For instance, a model knowledge 

base would enable corresponding user suggestions 

based on previously created models, which adhere to 

a similar device class or variant. 

Due to the minimized semantic gap and proper 

user guidance, we achieved a tremendous increase in 

modelling speed. An initial device model can be 

created within 1-2 hours, rather than in 12 hours, as 

evaluated during the TRUFAL project. Even without 

a previous expertise in the application domain, the 

language and tooling still exhibits an adequate 

learning curve. In our experience, new test engineers 

can be introduced to the modelling methodology in a 

matter of 1-2 hours, at which point they are qualified 

to write suitable test models. This is a significant 

improvement over an estimated 6-hour introduction 

phase within the TRUFAL project.  

Due to this effort reduction, the acceptance rate of 

the test engineers has been significantly improved. 

More or less autonomously, our current portfolio of 

measurement device models has been steadily grown 

over the course of the TRUCONF project. Fine-

tuning these models is still a necessary part of the 

model life cycle. However, we expect the necessary 

effort to be greatly diminished in comparison to the 

TRUFAL workflow. With the previously described 

results, we consider the main obstacles of the 

TRUFAL project as eliminated. We are convinced to 

be on the way to a good industrial adoption of our 

model-based testing methodology and if further 

issues should arise, the continued practice of MDE 

micro injections gives us the agility and flexibility to 

counter them. 

6 CONCLUSION AND OUTLOOK 

In this paper, we argued that the lack of 

methodologies for a step-wise introduction of MDE 

approaches within an agile industrial context is a 

common barrier to MDE adoption. We further 

illustrated how the application of MDE micro 

injections help to overcome this lack. We showcased 

how failing to adjust for MDE micro injections has 

contributed to rejecting MDE in an industry research 

project (TRUFAL). Namely, the principle of 

selecting the right abstraction level had been violated 



 

by attempting to fit the problem domain onto an 

existing general purpose modelling language, which 

was able to express the problem, but not in an elegant 

way, rather than designing a language that targets the 

end-user modelers. Furthermore, the introduction of 

the modelling method had been attempted in one 

large step, rather than in tiny doses, spanning several 

short iterations. This left little room for 

responsiveness to end users’ needs, which resulted in 

a non-desirable modelling language and tooling. 

However, the application of MDE micro 

injections helped to ensure a successful introduction 

of MDE methodologies within the TRUCONF 

project. Here, the modelling approach was designed 

to fit the test engineers’ needs from the start to make 

it desirable and let it become viral. Giving them 

control over the language design through regular but 

non-intrusive interviews ensured a minimized 

semantic gap and resulted in a steep learning curve. 

This way, the test engineers gained trust in the new 

approach and subsequently became fascinated with it. 

Choosing the right level of abstraction early on 

helped us to incorporate re-usable data and enable 

composability of different MDE approaches across 

various company departments. Structuring the 

development process into many, shorter iterations 

kept it on the right track through repeated feedback 

and ensured that the test engineers received new 

information and improvements in tiny doses rather 

than being overburdened by introducing all aspects of 

MDE at ones.  

User experience (UX) has turned out as a 

significant factor to ensure end user acceptance and is 

essential for a seamless and step-wise migration from 

legacy to model-based approaches. However, there is 

still room for improvement from a UX point of view 

for the mentioned use cases: For instance, the test 

engineers must still perform manual steps to 

incorporate generated test suites into the test 

automation system. Future versions of the model-

based testing tool are planned to automate the step of 

test suite submission, trigger test executions and play 

the results back into the model, which should give the 

test engineers a clear idea about the uncovered errors. 

Furthermore, the current version of the MDML 

models is purely textual. Although attempts at the 

definition of an appropriate graphical representation 

to extend the textual one have been made, developing 

a definitive solution including acceptable tool support 

turned out to be infeasible within the TRUCONF 

project. 

In future work, we will systematically collect 

stakeholders' feedback on the practise of MBE micro 

injections at AVL. In addition, we will review related 

IDE and DSL evaluation methods (e.g., USE-ME, 

FQAD) for inclusion into revised MDE micro 

injections. 
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