
A Daily Dose of DSL
MDE Micro Injections in Practice

Gerald Stieglbauer1, Christian Burghard1,2, Stefan Sobernig3 and Robert Korošec1
1AVL List GmbH, Hans-List-Platz 1, Graz, Austria

2Technical University of Graz, Inffeldgasse 16b, Graz, Austria
3Vienna University of Economics and Business, Welthandelsplatz 1, Vienna, Austria

{gerald.stieglbauer, christian.burghard}@avl.com, stefan.sobernig@wu.ac.at

Keywords: Model-Driven Engineering, MDE in Industry, MDE Micro Injections, Domain-Specific Language, DSL vs.

UML, Model-Based Testing, Usability, User Experience, Separation of Concerns, Data Re-Use, Abstraction,

Agile Development

Abstract: Although Model-Driven Engineering has proven to be an adequate solution for increasingly complex

engineering problems, its industrial adoption still remains limited. We argue in this paper that an important

factor in regard to a failed introduction of MDE methodologies is still a blurry conception and insufficient

distinction between applying MDE conceptually and introducing it into legacy-dominated industrial

environment. We further argue that the MDE introduction process can be significantly facilitated by the

application of so-called MDE micro injections, especially in agile development environments. Finally, we

substantiate our arguments by presenting a case study of three industrial research projects, which illustrates

the effectivity of MDE micro injections.

1 INTRODUCTION

More than ever, industry faces the challenge of rising

complexity in many application fields. While this

complexity rise is even accelerating, the provided

time span for the introduction of new technologies to

master the current complexity levels shortens

drastically. Consequently, managing complexity by

introducing sophisticated but lightweight

development methods and technologies is more

essential than ever before. Since more than two

decades, model-driven engineering (MDE) aims at

providing concrete solutions, which promise finding

the right level of abstraction, a separation of concerns,

as well as improving reuse in model-based software.

In contrast to these intentions, however, there is an

ongoing debate in the modelling community: Why is

industrial adoption of MDE – despite the obvious

needs – still limited? Why are other mitigation

strategies such as agile development methods (which

are by no means contradictory to MDE) favoured to

tame the perceived development complexity?

We claim in this paper that one root cause for this

situation lies in a blurry conception and missing

distinction between applying MDE (e.g. the act of

modelling) and introducing MDE (e.g. learning a

modelling language such as UML, choosing right

levels of abstractions, etc.). Within an ideal

environment for applying MDE, modelling principles

have been established from the very beginning by a

team of enthusiastic and well-educated modelling

advocates and corresponding solutions have always

been model-based. In industrial practice, however,

such an ideal environment is rather exceptional. For

instance, legacy practices often cause important

barriers to introducing MDE. Socio-cultural issues

associated with a methodology shift from traditional

engineering to MDE further contribute to these

difficulties. In addition, while agile development

environments are not contradictory to the application

of MDE, we claim however that they add to the

challenges of introducing MDE, which are often

underestimated or neglected in modelling theory. In

this paper, we thus promote an MDE introduction

strategy called MDE micro injections, which has been

initially published in (Stieglbauer & Rončević, 2017).

The intention of the method is to reduce the gap

between an ideal application and a practical

introduction of MDE within an agile industrial

environment related to legacy solutions. Since we

focused in (Stieglbauer & Rončević, 2017) more on

theoretical and methodological aspects of MDE

micro injections, we are reflecting in this paper on

three concrete research projects (covering a period of

more than six years), which contribute significantly

to the idea of MDE micro injections.

Table 1: Different aspects of MDE applied in the

corresponding research projects.

 Application

of MDE

Introduction

of MDE

UX

Aspects

TRUFAL   

TRUCONF   initially

DLUX   

The associated research projects all refer to the

same use case of establishing an automated test case

generation process for measurement devices in the

domain of automotive testbeds. All three projects are

related to MDE approaches to generate test cases but

differ concerning their focus on MDE application vs.

introduction (see Table 1). The central idea of the

TRUFAL project1 (2011-2014) was the application of

UML modelling techniques on a mutation-based

testing methodology. While the value of the applied

methodology was successfully proven (Aichernig, et

al., 2014) the industrial adoption of the modelling

techniques remained limited. Reasons for this limited

adoption were analysed in the follow-up research

project TRUCONF2 (started 2014). Many of these

reasons pointed towards difficulties in introducing a

generic modelling language for a very particular

application field. Consequently, a DSL-based

approach was favoured in the TRUCONF project to

overcome the observed difficulties. However, it soon

turned out that a good overall user experience (UX) is

essential when considering the introduction of the

DSL. Due to a lack of well-established methodologies

for analysing the user experience for DSLs, the

DLUX3 project (started 2017) was initiated to put

more emphasis on UX aspects in terms of empirical

evaluations related to the MDE introduction process

and the applied modelling tools.

2 MDE MICRO INJECTIONS IN A

NUTSHELL

Agile development and continuous integration

methods have shortened development cycles, so-

called sprints (associated with concrete submission

deadlines), from months to weeks, sometimes even

days. These methods were designed to handle

1 https://trufal.wordpress.com/
2 http://truconf.ist.tugraz.at/

complexity by relying on flexible adaption of

intermediate goals on a daily basis. If a concrete

outcome and its practical application fails to meet the

expectations (e.g. due to a lack of knowledge of the

overall system), this is instantaneously recognized

(e.g. by test automation) and corrected during the next

iteration. This method has been accepted as common

practice in today’s industry, regardless of the

discussion whether such an approach favours short-

term aspects over long-term goals, if not carefully

applied and supervised by dedicated system

architects. MDE approaches should be of special

interest for such architects, since corresponding

abstraction layers structure the long-term goals on the

one hand and simplify the implementation phase on

the other hand. Many existing MDE tools, however,

originate from a past golden tool era when agility was

by far less dominant and waterfall approaches were

state-of-the-art. A rapid tool-introduction was not at

the top of an MDE tool vendor’s requirement list and

the acquisition of sufficient theoretical and

methodical knowledge was less of a strain on the

users’ weekly schedules than it is today.

Consequently, many MDE tools were not

intentionally designed to adhere to agile tool

introduction sprints. Moreover, adapting them to the

changed conditions has turned out to be challenging

due to legacy issues of an aged code base and a

significant drop of investments on the tool market

(Bordeleau & Edgard, 2014). As one consequence,

the affected developers primarily perceive the

introduction of an MDE tool as a threat against their

upcoming deadlines rather than a relief from their

actual troubles caused by raising complexity.

Figure 1: Paradigms and characteristics of MDE micro

injections.

The intention of MDE micro injections is to

circumvent these issues by several paradigms and

characteristics which are summarized in Figure 1.

3 https://dlux.wu.ac.at/

Introduction vs.

application

Impact analysis

MDE micro

injections
Paradigms

Design of MDE

introduction

strategies

Adhere to MDE

principles

Separation of

roles

Focus on User

Experience

Composability

Applicable within

one agile sprint

Characteristics

Very viral

Small doses

High

concentration

High pureness

Usability
Non-intrusiveness

Positive emotions

Injection

Designer

System architect

End-users

Right level of

abstraction

Separation of concerns

Optimize data re-use

Rapid Prototyping

Competing solutions

Measurable

impact

Agile introduction

Low-hanging-fruits first

One paradigm of MDE micro injections is to enhance

classical MDE application scenarios by agile MDE

introduction strategies. Another one is a clear

separation of roles: potential model-driven

developers (i.e. MDE end-users) versus the role of

modelling advocates or - as we call them in this paper

– the micro injection designers. Essential capabilities

of these micro injection designers do not only

comprise a good knowledge about modelling theory

and its application fields but also includes a strategy

about the agile introduction of MDE. While classical

MDE theory favours abstraction, separation of

concerns and re-usability as primary concepts, a

micro injection designer has a deep understanding in

these issues but focuses on other topics concerning

the introduction of MDE: First, she or he takes care

about splitting the MDE introduction process into

tranches and ensures that each tranche can be

realistically applied and completed within one

development sprint of the corresponding target group

of end-users. Second, the injection designer aims to

maximize the overall user experience for the end-

users - especially during an MDE introduction

process.

We want to emphasize that the term user

experience includes but goes far beyond the notion of

tool usability but comprises as well socio-cultural and

psychological aspects. A good user experience should

minimize negative emotions (e.g. not endanger an

upcoming deadline or cause fear about loss of

control) but should maximize positive ones (e.g.

solving a concrete problem immediately within the

actual sprint).

Figuratively, the skills of a micro injection

designer are reflected by the following

characteristics of MDE micro injections: first, these

injections must have a viral effect. Corresponding

MDE approaches must become desirable to potential

end-users so that they propagate the approach

autonomously, once the injection designer has

‘infected’ a critical mass. A good user experience

supports desirability.

Despite its infective potential, however, particular

MDE injections must be given in small doses to

minimize possible side effects such as negative

emotions and other hindering social-cultural effects

like the ‘not-invented-here-syndrome’. This

syndrome is a common reaction to not yet established

innovations, which have not been created by the

target group but should be realized by them.

However, the syndrome can be cured by the injection

designer via a careful selection of early adopters from

the target group, who are the first in line to gain the

laurels of success from the management in case of a

successful MDE adoption.

Independent from its small doses, the MDE micro

injection is highly concentrated to maximize its

effectiveness. Instead of a time-consuming design

phase for an overall cross-product and company-wide

MDE approach, potential islands of success should be

detected, analysed and low-hanging fruits should be

prioritized. A valuable indicator of a low-hanging-

fruit is if a corresponding MDE approach increases

the level of automation (e.g. by using test

automation). To ensure effectivity, small but

coordinated teams should bring up initial solutions by

using rapid prototyping (e.g. model editor

generation).

However, (separated) islands of success must not

contradict another characteristic: high pureness of an

MDE micro injection should avoid any violation of

MDE principles. Besides selecting the right level of

abstraction and applying separation of concerns

where feasible, composability of the various islands

of success is an essential requirement, especially if

the islands grow in size and prospectively merge to

bigger ones. The best individual solutions will not be

sustainable if they are incompatible with other ones.

Furthermore, sustainable growth of the islands

can only be assured by a long-term support of the

involved management stakeholders. What managers

require for their support, however, are concrete

numbers. Thus, the effect of each small MDE micro

injection must be measurable. Corresponding

measurements may be done by empirical evaluation

(e.g. user experience studies) or by competing parallel

solutions, one using a traditional approach, while the

other is based on an MDE approach. The measurable

comparison criteria for competing solutions may be

development speed, code quality (e.g. bug fixing

benchmarks, test coverage, etc.) or requirement

fulfilment rate. To provide expressive numbers, the

MDE-approach-related benchmark must be

normalized in terms of initial overhead, which shall

be taken into account during the introduction phase.

However, even if it is subtracted from the

benchmark, this overhead must not be neglected and

has to fulfil the overall MDE micro injection

paradigm: A single injection action and analysis of its

impact must be feasible within one development

sprint. Otherwise, the effectiveness of the MDE

micro injection will be significantly diminished

independent from the chosen concentration factor: the

MDE prototype solutions will be significantly

inferior to the previously established solution and the

expressiveness of the measured impact is degraded

and blurred again.

3 USE CASE: MODEL-BASED

TEST CASE GENERATION

FOR MEASUREMENT

DEVICES

AVL is the world’s leading company in providing

instrumentation and test systems to the automotive

industry and other domains in form of automotive

testbeds. A testbed is a complex system of systems

exhibiting a tremendous variety, depending on the

customer’s requirements. For instance, a testbed for

engine testing consists of more than 70 different

subsystems, including measurement and conditioning

systems for fuel, air, oil, exhaust, coolant and

electricity. Consequently, each testbed variant needs

to be tested extensively to eliminate any side-effects

caused by the integration of its subsystems.

The use case addressed by the mentioned research

projects covers a specific class of subsystems, i.e.

measurement devices. These devices are used to

measure specific quantities of the unit under test (e.g.

a combustion engine), for instance exhaust gas

concentrations or fuel consumption. All subsystems

of the testbed are controlled by a testbed automation

software called PUMA Open. For each new software

release, about 50 different measurement devices

undergo various integration tests to ensure

compatibility with the testbed automation system.

This is traditionally done by applying a series of test

suites to the PUMA Open software objects which

encapsulate the connection to the individual

measurement devices. A more detailed description of

the measurement device testing process can be found

in (Auer, 2014). For each individual device, the

testing process requires a minimum effort of one

person-day. This relatively big effort is partially

caused by the issue that test suites are mainly written

and maintained at coding level (i.e. using Visual

Studio and NUnit), which burdens the test engineers

with the time-consuming and error-prone tasks of test

suite maintenance and ad-hoc test coverage analysis.

We aim to mitigate these shortcomings by

introducing a model-driven testing methodology to

the measurement device testing process. The testing

methodology is based on a mutation-based testing

approach, which has been developed4 during the

TRUFAL project (Aichernig, et al., 2014) and was

further improved by the TRUCONF project (e.g. by

including testing of non-functional requirements).

4 Development on the model-based testing approach started

in an earlier project, in which AVL was not involved.

See http://www.mogentes.eu/

The methodology requires the test engineer to create

a behavioural model of the measurement device under

test. The model serves as an input to a mutation-based

test case generator, which is used to generate the

NUnit test suites per a mutation coverage criterion.

Due to this methodology shift, we intend to

significantly decrease test suite coding and

maintenance effort, while increasing test quality and

coverage using mutation-based testing.

4 EVALUATING THE TRUFAL

PROJECT AGAINST THE IDEA

OF MDE MICRO INJECTIONS

The TRUFAL project (2011-2014) was a research

project, which aimed at the development of an

efficient model-based test case generation

methodology for highly complex systems. On AVL

side, measurement devices were chosen as case

studies. The focus was on efficiently finding

implementation faults, which violate the functional

specification. At the time when the project was

started, functional testing was done either by

performing manual tests on corresponding user front-

ends or by writing unit tests on the level of the

device’s communication protocol. Testbed

components such as measurement devices are not

manufactured in form of mass production but are

high-end devices for professional industrial use,

available in many variations and combinations.

Consequently, device testing is an expensive task in

general, especially if combinations of variations of

these devices must be tested. To make this kind of

integration tests affordable, AVL has already

developed device simulators before the TRUFAL

project was started. However, it was the intention of

the TRUFAL project to elaborate on a next step

regarding cost reduction and efficiency improvement

after device virtualization and simulation: On the one

hand, manual testing should be superseded by an

automated method, whereas each test is reproducible

at any time, e.g. if a new variant of a device has been

introduced or a different combination of device

variants must be integrated. On the other hand, a

model-based approach was introduced to raise low-

level unit test programming to a much higher level of

abstraction. Test models were intended to encode the

intended functional behaviours from which a test case

generator derived the (formerly manually written)

unit (or integration) tests. To improve the efficiency

of this model-based testing approach even beyond the

classical introduction of abstraction, the principle of

mutation-based testing was applied. Here, the test

models are slightly modified by a mutation algorithm.

Afterwards, the test case generator produces test

sequences which uncover observable deviations in

the behaviour of these mutants. The intention of this

approach is to improve testing efficiency by

increasing the test coverage rate for the generated test

cases in comparison to a more straightforward

mapping of the test model to a test suite. More details

can be found in (Aichernig, et al., 2014), where the

approach as such has been verified successfully. For

instance, the quality and efficiency of several types of

auto-generated test suites has been evaluated and a

more efficient mutation-based test case generation

algorithm with a significantly reduced runtime has

been developed (Jöbstl, 2014).

Despite its illustrated usefulness, however, the

industrial adoption of the approach remained limited.

An obvious indicator was the low number of

modelled devices during the project and the amount

of time needed to correctly specify a device model.

For instance, the creation of an initial model took

roughly 12 hours, followed by an additional 40 hours

for fine-tuning and bug-fixing. This estimate does not

include the effort of familiarizing oneself with the

overall model-based testing approach, as well as the

modelling tools, which took 6 additional hours. This

was despite the use of a standard modelling language

(UML) and a standard compliant tool (Papyrus).

In the following, we are analysing possible root

causes of the limited adoption by evaluating the

applied methods of the TRUFAL project against

some of the MDE micro injection paradigms and

characteristics. First, we raise the question if there

was a clear separation of the application and the

introduction of the TRUFAL methodologies. One

could argue that this separation was indeed present

for the following reason: a team of modelling

advocates put reasonable effort on the definition of

the right abstraction for device modelling to fit the

requirements of the mutation-based test case

generation approach. Only due to their expertise, an

adequate level of abstraction was found to fulfil the

project’s aims of automated, reproducible test-case

generation with reasonable test coverage. So, the

baseline for a successful application was set.

However, is such a baseline enough for a successful

introduction?

To answer this question, we examine the

desirability of the approach. In case of the TRUFAL

project, this examination remains inconclusive, since

the end-users have neither been interviewed, nor were

otherwise involved in the design phase. Instead, they

were confronted with model structures, which fulfil

the requirements of the test case generator to enable a

successful evaluation of mutation-based test case

generation methodology but not necessarily reflected

the test engineer’s way of thinking. This led to

scepticism against this approach, which is quite the

opposite of desirability. One could argue that

corresponding modelling courses would bridge this

gap, another could argue that it is still advisable to

minimize the gap by a more suitable language design.

However, since this was considered to be outside the

scope of the TRUFAL project, the corresponding

MDE injection has turned out not to be very viral.

If the MDE injection was not viral, did it at least

fulfil the characteristic of small doses to avoid

negative side-effects? In case of the TRUFAL

project, the test models have been based on UML

state machines and class diagrams, which were

implemented in the UML modelling tool Papyrus.

However, it was as well beyond the scope of the

project to analyse, which subset of these UML

diagrams would be sufficient for test case generation

(e.g. by applying a UML profile) or how Papyrus

needs to be tailored (e.g. limiting menu entries to

those needed by the involved diagram types).

Consequently, the end-users were confronted with a

full-fledged UML tool. Due to the feature-richness of

both the tool and the UML language they had to learn

the semantics of UML first and map their intuitive

view of individual device tests to an appropriate UML

representation using the correct tool features.

Additionally, the underlying test case generator

required some additional model features (specifically,

class diagrams) to specify the test interface. The end-

user had to be aware of all these issues in order to

create a test model suitable for test case generation.

Any mistake led to an obscure failure of the test case

generation process, the root cause of which was hard

to evaluate. Due to limited user guidance by the

model editor, considerable efforts were needed to

train the end-users, which contradicts the MDE micro

injection characteristic of a small dosage. Incorrect

models and misinterpretations of model semantics

caused frustration and led to the subjective

impressions among the test engineers that MDE

introduces complexity rather than diminishing it.

Due to the lack of a UML profile, it could be

argued that defining one would have avoided this

situation. However, defining such a profile does not

intrinsically imply that the right elements are selected

and, even if so, that the semantics of the profile

becomes understandable out-of-the-box to the end-

users. Furthermore, even if the profile seems to be

appropriate objectively, the end-user’s subjective

impression may vary significantly. Related to our use

case, test engineers have to rely on a particular

amount of information about a measurement device

(e.g. device documentation, requirement

agreements5). It may be quite difficult for them to

perform the mental process of translating this

information to the semantics of a correct model, even

if a UML profile has been applied. If this translation

process is not considered during languages design,

the efficiency of the modelling process decreases

significantly. At this point, the importance of a

careful domain specific language design becomes

apparent. According to our experience, it is not

sufficient that a UML profile (or any other DSL

variety such as a grammar for a textual DSL) is

applied but how such a profile is designed (in close

collaboration with the end-users) to create ‘real’

domain-specific languages.

Since a UML standard compliant tool such as

Papyrus was used, one could argue that the MDE

injection must be at least very pure and no MDE

principles could have been violated. Nevertheless, we

observed several MDE principle violations. If

considering the principles of a proper abstraction

level and separation of concerns with the intention to

reduce complexity, the resulting measurement device

models were surprisingly complex - not only in terms

of comprehensibility but also in terms of their size.

Consequently, even a modelling advocate, who was

actively involved in the research project, had to spend

considerable time to produce a suitable device model.

One reason for this was the involvement of several

interdependent state machines. In case of the

interdependent state machines, a state switch in one

state machine may cause a series of state switches in

other state machines. Although these

interdependencies were following a certain repetitive

scheme, they were not classified as primary language

constructs. Instead of separating them from the

remaining model, these relations have been modelled

rather implicitly and through several model elements

spread over the entire model.

Apparently, we failed to meet almost every

characteristic of the proposed MDE micro injections

in the TRUFAL project, which in our view caused the

very limited practical adoption despite the proven

usefulness of the model-based testing approach. Since

the applied MDE injection was neither viral nor small

5 This information may be created by another department

and (due to several company-depended restrictions)

in terms of a micro injection nor highly concentrated

nor very pure, the measurable impact was very low

or even non-evaluable, not only because we tried to

replace a complex traditional methodology with a

complex modelling approach, but also because the

introduction of the chosen approach was by no means

feasible within a corresponding development sprint.

This not only prevented concrete empirical

evaluations of the practical impact of the approach,

but made a comparison of the traditional and model-

based approaches impossible: Keeping the model

consistent with the weekly updates of the traditional

approach was hard to achieve. Consequently, the

model-based approach always remained inferior to

the traditional one, which negated its claimed effects

(such as complexity reduction) and promoted

scepticism among the potential end-users.

5 APPLYING MDE MICRO

INJECTIONS DURING THE

TRUCONF AND DLUX

PROJECTS

5.1 Establishing the Role of a Micro
Injection Designer

After a successful evaluation of the TRUFAL test

case generation methodology itself (independent

from its industrial adoption rate), the TRUCONF

project (started 2014) is intended to enhance the

applied methodology by supporting non-functional

requirement testing (e.g. by including performance

constraints) on the one hand but also has a strong

focus on overcoming the limited industrial adoption

of the TRUFAL results by applying some of the

paradigms and characteristics of MDE micro

injections. A dedicated role of an MDE micro

injection designer was established in the TRUCONF

project.

The injection designer began a process of

acquiring the end-users’ domain knowledge more

deeply through close but non-intrusive interaction.

This action was strongly supported by the team leader

of the test engineers, which turned out to be essential

to establish short meetings on a regular basis with

motivated participants. The injection designer soon

found out that many test engineers had a similar

structure in mind when they were designing test

cases. Due to a lack of modelling skills, however,

cannot be modified to better comply with the intended

model semantics.

they were not able to formalize or communicate this

in form of a precise semantics. Due to the obvious gap

between the model semantics applied in the TRUFAL

project and the input gained from the test engineers,

the injection designer investigated, which publicly

available model languages had the potential to

diminish this semantic gap. It turned out that the

language Gherkin6 was a good candidate for the use

as a language baseline. In one particular case, it even

turned out that a test engineer invented languages

similar to Gherkin to keep track of the tests with pen

and paper.

The injection designer continued closing the gap

by further interviews through which he evolved an

initial version of the so-called Measurement Device

Modelling Language (MDML, more details can be

found in (Burghard, et al., 2016)). Each sprint period,

the injection designer came along with a concrete

modelling tool prototype for MDML, which has since

been updated for each iteration. This prototype made

a rather abstract semantics more obvious to the end-

users and initial hands-on sessions gave them the

experience of a deep language design involvement,

where fears (e.g. of a loss of control) were no longer

an issue. Due to the short duration of each iteration,

the Eclipse Xtext framework7 was used to create rapid

prototypes of a textual DSL editor. Using the Xtext

core features to generate a model editor, a data model

and a model parser led to already quite mature results

(e.g. syntax highlighting and code completion), which

were very attractive to the end-users.

The rapid prototyping facilities of the Xtext

framework significantly supported the step-wise

introduction of MDML using tiny doses of MDE

injections at an early state of the collaboration, which

turned out to be very viral, since the test engineers felt

involved but not threatened by the evaluated MDML

approach and continued on their own to spread the

discussed ideas to other test engineers. Rapidly

changing and updating the prototypes according to

their input was an essential catalyst and important to

establish trust between the injection designer and the

test engineers. This trust was strengthened due to the

fact that the prototypes gave them a concrete

impression of the future implementation of the

model-based testing approach, as well as of the

straightforward and understandable tooling.

6 https://cucumber.io/docs/reference
7 https://www.eclipse.org/Xtext/

5.2 User Experience on Spot: DLUX

The positive feedback of the test engineers during this

early design phase emphasizes the importance of user

experience (UX) aspects during the introduction of

MDE approaches. As sketched in the previous

section, user experience aspects go far beyond tool

usability. Although tool usability was already kept in

mind, simplifying the mental mapping process from

existing workflows to a corresponding model

representation was the essential breakthrough in

terms virality and desirability. To address user

experience systematically, beyond the scope of

TRUCONF, led to the DLUX project (User

Experience for Domain-specific Languages). DLUX

has a two-fold purpose: First, it should be examined

whether a generic evaluation-method kit for assessing

and improving the user experience of DSLs can be

developed in support of MDE-related activities at

AVL (including TRUCONF). Second, the

evaluation-method kit should be applied on selected

use cases (MDML). Regarding TRUCONF, the

selected use case was the modelling and test case

generation process of a particular measurement

device8 using MDML. For this use case, the following

sub-aspects of UX have been investigated:

(1) How do the test engineers locate and collect

the required information about the involved device?

How do they judge the relevance and quality of their

data sources?

(2) How do the engineers map the collected

information mentally to their (potentially sub-

conscious) semantics and workflow structure? What

are the perceived difficulties of this mapping process?

(3) How are their semantics and workflow

structure represented in the current MDML

prototype?

(4) How do they perceive the usability of the

concrete MDML tool prototype?

(5) Regarding the generated test cases, is the end-

user sufficiently informed about their properties and

the related test-case coverage?

(6) What happens if test case generation fails?

How likely is a discontinuity of the modelling process

and a disruptive fallback to manual testing?

(7) How can the cause of the failure (e.g. due to a

tool bug vs. due to an invalid model) be examined?

Which kind of support should be established to

overcome the issues successfully?

8 Specifically, the AVL Micro Soot Sensor (AVL List

GmbH, 2015)

 (8) How can sufficient test reports be created,

once test case generation and execution has

terminated successfully?

Figure 2: Series of heuristic walkthroughs in DLUX.

At the time of writing this position paper, the

issues 1) to 6) have already been partly evaluated in

the DLUX project. The evaluation has happened

through a series of heuristic walkthroughs

(Mahatody, et al., 2010) of the MDML prototype,

with test engineers taking the role of tool evaluators.

The 2-hrs walkthroughs consisted of pre-tests, a task-

based tool walkthrough, a tool assessment based on

UX heuristics, and a post-interview (see Figure 2).

The activities were recorded, transcribed, and

analysed. The results were forwarded to the injection

designer, on the one hand, but also to the interviewees

to strengthen their involvement, on the other hand.

Overall, the modelling tool and language was well

received regarding user guidance vs. degrees of

freedom, minimalistic design, flexibility and

efficiency. However, the evaluators expressed the

need for improved documentation, authoring support,

validation, and error mitigation. Furthermore, means

to access materials (e.g., device handbooks) required

during the modelling process should be made

available from within the tool.

5.3 Ensuring Composability, Data
Integration and Re-Use

In this section, we elaborate on selected intermediate

DLUX results and examine their relations to MDE

micro injections. We established high pureness as a

characteristic of MDE micro injections, as well as

right level of abstraction, separation of concerns,

data re-use and composability as corresponding

requirements. When examining UX aspect 1) (“How

do test engineers collect the required information?”),

it turned out that test engineers often do not have the

necessary access to primary data sources on

measurement devices and/or prefer other sources,

which are easier to access but provide lower quality

in terms of completeness and correctness. In case of

the measurement devices, this led to inconsistent

naming conventions for state labels and state

dimensions, incomplete and/or contradictory

specifications in edge cases as well as a prevalent

sense of confusion about the correctness of particular

device models or tests.

The needed device information is mostly created

by the device-firmware developers. However, this

information source is barely accessible for the

following two reasons: First, information is

commonly kept deep inside the firmware code and the

corresponding documentation as a common source of

information is not always kept perfectly up-to-date.

Second, integration test engineers and firmware

developer work in different departments, which

turned out detrimental to communication flows. The

MDE efforts in TRUCONF and MDML form part of

a broader consolidation process towards inter-

departmental data exchange and reuse (Stieglbauer &

Rončević, 2017). A so-called Device Knowledge

Base (DKB) was established. The DKB contains

primary information such as device states and device

commands, which needs to be shared across

departments. In this case, the requirements for sharing

data drives the definition of the meta-model of the

DKB and lead naturally to an adequate level of

abstraction. Public interfaces to the DKB based on

this abstraction (e.g. to enable data web-frontends)

give the test engineers direct access to primary device

data, rather than having them resort to secondary data

sources (manuals). The DKB turned out to act as a

promising and straightforward method of finding the

right level of abstraction for the involved models and

the meta-model design.

Regarding the MDML tool, automated data

integration and re-use was established in the

following way: On the one hand, the MDML editor

allows for creating model skeletons. These include an

interface definition based on the device’s name,

firmware version, commands and states. In addition,

auto-completion and tool-tip information can be

provided. This is because, the DKB provides a certain

amount of semantic information (e.g. the purpose of

a particular command). These improvements are

likely to increase the efficiency of writing device tests

since the UX evaluation in DLUX has shown that test

engineers spend more time on searching and

navigating data sources than on the actual modelling

task.

In DLUX, micro injections are applied in parallel

to a second use case relevant for firmware

development (a detailed description of this use case

would go beyond the scope of this paper). This

parallel application matches the idea of separation of

concerns, since the model design for both areas focus

on specific needs of the corresponding end-users to

maximize their UX: Consequently, firmware models

are partly comprised of different model components

compared to test models but also consist of common

elements. If both approaches thus remain entirely

separated and – even worse – would be incompatible

due to using different semantics of their common

language constructs (such as device states) the MDE

micro injection characteristic of composability would

be violated. Therefore, elements such as a device state

used in both models are based on the same semantics

(e.g. as defined for UML state diagrams).

Furthermore, it was ensured that these common

elements are editable only in one model (the primary

source of truth), whereby references to them are used

in the other model. In case of device states, the

firmware model is the primary source, while the test

model uses states only as references. Corresponding

activities of the involved injection designers and

cross-department system architects are required to

ensure this compatibility. Only then, composability of

MDE approaches becomes guaranteed, which enables

effective and even automated data re-use and data

forwarding across company departments.

5.4 Success Factors and Measurable
Impact

In this section, we sketch further success factors

derived from improving the UX aspects (2) – (4) and

their measurable impact, where applicable. Through

the iterative coordination with the test engineers, the

language meta-model and semantics had soon settled

into a form which was well suited to their

understanding of the application domain, as well as to

their intuitive modelling workflow.

First, they collect information about the involved

device states and device commands for a specific

measurement device. In the ideal cases, this

information can be entirely imported from the DKB

at the time of model creation as described in the

previous section. In order to complete this

information in alignment with their mental model of

test case definitions (2), they look for corresponding

state machine and/or command descriptions in related

requirement documents and user manuals. Based on

these two sources, the test engineers populate a

corresponding MDML model with the corresponding

behavioral information (3). They experience this

process as quite straightforward, since - due to the

design of MDML – populating the model is feasible

in small incremental steps and meaningful test cases

can even be derived in early states of the modelling

process. The only significant impediment is caused

by contradictory information still present in some of

the non-re-usable source material. Generally, the test

engineers perceive UX of the language and tool

prototypes in their current state to be well-tailored to

their purpose, but still flexible enough to ensure an

efficient modelling process (4). The efficiency is

further increased, if the tooling would actively

suggest meaningful model examples depending on

the given device. For instance, a model knowledge

base would enable corresponding user suggestions

based on previously created models, which adhere to

a similar device class or variant.

Due to the minimized semantic gap and proper

user guidance, we achieved a tremendous increase in

modelling speed. An initial device model can be

created within 1-2 hours, rather than in 12 hours, as

evaluated during the TRUFAL project. Even without

a previous expertise in the application domain, the

language and tooling still exhibits an adequate

learning curve. In our experience, new test engineers

can be introduced to the modelling methodology in a

matter of 1-2 hours, at which point they are qualified

to write suitable test models. This is a significant

improvement over an estimated 6-hour introduction

phase within the TRUFAL project.

Due to this effort reduction, the acceptance rate of

the test engineers has been significantly improved.

More or less autonomously, our current portfolio of

measurement device models has been steadily grown

over the course of the TRUCONF project. Fine-

tuning these models is still a necessary part of the

model life cycle. However, we expect the necessary

effort to be greatly diminished in comparison to the

TRUFAL workflow. With the previously described

results, we consider the main obstacles of the

TRUFAL project as eliminated. We are convinced to

be on the way to a good industrial adoption of our

model-based testing methodology and if further

issues should arise, the continued practice of MDE

micro injections gives us the agility and flexibility to

counter them.

6 CONCLUSION AND OUTLOOK

In this paper, we argued that the lack of

methodologies for a step-wise introduction of MDE

approaches within an agile industrial context is a

common barrier to MDE adoption. We further

illustrated how the application of MDE micro

injections help to overcome this lack. We showcased

how failing to adjust for MDE micro injections has

contributed to rejecting MDE in an industry research

project (TRUFAL). Namely, the principle of

selecting the right abstraction level had been violated

by attempting to fit the problem domain onto an

existing general purpose modelling language, which

was able to express the problem, but not in an elegant

way, rather than designing a language that targets the

end-user modelers. Furthermore, the introduction of

the modelling method had been attempted in one

large step, rather than in tiny doses, spanning several

short iterations. This left little room for

responsiveness to end users’ needs, which resulted in

a non-desirable modelling language and tooling.

However, the application of MDE micro

injections helped to ensure a successful introduction

of MDE methodologies within the TRUCONF

project. Here, the modelling approach was designed

to fit the test engineers’ needs from the start to make

it desirable and let it become viral. Giving them

control over the language design through regular but

non-intrusive interviews ensured a minimized

semantic gap and resulted in a steep learning curve.

This way, the test engineers gained trust in the new

approach and subsequently became fascinated with it.

Choosing the right level of abstraction early on

helped us to incorporate re-usable data and enable

composability of different MDE approaches across

various company departments. Structuring the

development process into many, shorter iterations

kept it on the right track through repeated feedback

and ensured that the test engineers received new

information and improvements in tiny doses rather

than being overburdened by introducing all aspects of

MDE at ones.

User experience (UX) has turned out as a

significant factor to ensure end user acceptance and is

essential for a seamless and step-wise migration from

legacy to model-based approaches. However, there is

still room for improvement from a UX point of view

for the mentioned use cases: For instance, the test

engineers must still perform manual steps to

incorporate generated test suites into the test

automation system. Future versions of the model-

based testing tool are planned to automate the step of

test suite submission, trigger test executions and play

the results back into the model, which should give the

test engineers a clear idea about the uncovered errors.

Furthermore, the current version of the MDML

models is purely textual. Although attempts at the

definition of an appropriate graphical representation

to extend the textual one have been made, developing

a definitive solution including acceptable tool support

turned out to be infeasible within the TRUCONF

project.

In future work, we will systematically collect

stakeholders' feedback on the practise of MBE micro

injections at AVL. In addition, we will review related

IDE and DSL evaluation methods (e.g., USE-ME,

FQAD) for inclusion into revised MDE micro

injections.

ACKNOWLEDGEMENTS

TRUFAL was funded by the Austrian Federal

Ministry of Transport, Innovation and Technology

(BMVIT) under the program “FIT-IT - Trust in IT

Systems” between Mar 2011 and Feb 2014.

TRUCONF and DLUX are funded by the Austrian

Federal Ministry of Transport, Innovation and

Technology (BMVIT) under the program "ICT of the

Future" between Nov 2014 – Jan 2018 and Feb 2017

– Mar 2018, respectively.

REFERENCES

Aichernig, B. K. et al., 2014. Model-Based Mutation

Testing of an Industrial Measurement Device.

International Conference on Tests and Proofs.

Springer, Cham, pp. 1-19.
Auer, J., 2014. Automated Integration Testing of

Measurement Devices, Graz: Graz University of

Technology, Institute for Softwaretechnology.

AVL List GmbH, 2015. Product Guide MSSplus - AVL

Micro Soot Sensor plus. Graz.

Bordeleau, F. & Edgard, F., 2014. Model-Based

Engineering: A New Era Based on Papyrus and Open

Source Tooling.. OSS4MDE@ MoDELS, pp. 2-8.

Burghard, C., Stieglbauer, G. & Korošec, R., 2016.

Introducing MDML-A Domain-specific Modelling

Language for Automotive Measurement Devices. Joint

Proceedings of the International Workshop on Quality

Assurance in Computer Vision and the International

Workshop on Digital Eco-Systems, pp. 28-31.

Jöbstl, E., 2014. Model-based mutation testing with

constraint and SMT solvers, Graz: Graz University of

Technology, Institute for Software Technology.

Mahatody, T., Sagar, M. & Kolski, C., 2010. State of the

Art on the Cognitive Walkthrough Method, Its Variats

and Evolutions. International Journal of Human-

Computer Interaction, 26(8), pp. 741-785.

Stieglbauer, G. & Rončević, I., 2017. Objecting to the

Revolution: Model-Based Engineering and the

Industry-Root Causes Beyond Classical Research

Topics. Proceedings of the 5th International

Conference on Model-Driven Engineering and

Software Development (MODELSWARD), pp. 629-

639.

