

i

Abstract

Software testing consumes much of the total development effort, with man-
ual testing still being a considerable part of it. To lower the costs and to
improve the efficiency of testing, a great amount of research was conducted
in the area of automated test-case generation. This thesis focuses on devel-
oping an interface to combine different automated testing strategies.

There is an abundance of model-based testing tools available. The manual
creation of models and their integration into the software development pro-
cess are still critical issues. This work presents a test-sequence generation
approach for applications driven by business rule engines. The application’s
behavior is stored in these rules in an abstract manner. We use a property-
based testing (PBT) tool, FsCheck, to generate test sequences. A property is
a high-level specification of the behavior of a code unit. We derive models
and test-data generators from the rule engines to form properties of a sys-
tem under test. We define these properties in C# and verify if the properties
hold for our system or not.

Furthermore, we work on exploiting the PBT features and combining them
with external test-sequence generators. An interface for FsCheck is pre-
sented that allows us to integrate other generation strategies such as mutation-
based testing into it. We aim to give the tester more control over the pro-
duction of meaningful operation sequences for test cases. By integrating an
external test-case generator into a PBT tool, we can create test cases that
follow certain coverage criteria. This is shown by combining the model-
based mutation tool, MoMuT, as an external generator with FsCheck to cre-
ate model-based mutation tests.

Integrating MoMuT allows us to reduce the test execution time, as we do not
need to create a large number of random tests to cover certain model aspects.
We demonstrate our interface with a simple example of an external gener-
ator based on regular expressions and, finally, conduct a case study, where
we integrate MoMuT into FsCheck, discuss and evaluate the approach.

Keywords: Model-Based Testing, Property-Based Testing, Test-Case Gen-
eration, Mutation-Based Testing, MoMuT, FsCheck, Web-Services, Business-
Rule Models

ii

Kurzfassung

Das Software-Testen ist ein großer Anteil des gesamten Entwicklungsauf-
wandes, wobei das manuelle Testen noch immer eine entscheidende Rolle
spielt. Um die Kosten zu reduzieren und die Effizienz zu steigern, wurde im
Bereich der Testautomatisierung viel Aufwand in die Forschung investiert.
Ziel dieser Arbeit ist es, eine Schnittstelle zu entwickeln, um verschiedene
Testautomatisierungsmethoden zu verbinden.

Es existiert bereits eine Menge an modelbasierten Testwerkzeugen. Jedoch
ist die Generierung von Modellen und deren Integration nach wie vor ein
kritisches Thema des Softwareentwicklungsprozesses. Diese Arbeit präsen-
tiert einen Prozess zur Testfallgenerierung für Applikationen, die von Business-
Rule-Models angetrieben werden. Das Applikationsverhalten ist in diesen
Regeln in abstrakter Art gespeichert. Wir verwenden FsCheck, ein Property-
Based-Testing Tool, um Testsequenzen zu generieren. Eine Property ist eine
Spezifikation des Verhaltens einer Programmeinheit. Wir leiten Modelle und
Testdatengeneratoren von den Business-Rules ab, um Properties für ein zu
testendes System zu erzeugen. Diese Properties sind in C# definiert und es
wird überprüft, ob diese für das System gelten oder nicht.

Zusätzlich haben wir Teile aus dem Property-Based-Testing extrahiert, um
diese mit anderen Testsequenzgeneratoren zu verbinden. Es wird eine Schnitt-
stelle für FsCheck präsentiert, welche es erlaubt, andere Testgenerierungs-
methoden wie mutationsbasiertes Testen zu integrieren. Wir versuchen dem
Tester mehr Kontrolle über den Generierungsprozess zu geben, um sinn-
volle Sequenzen für Testfälle zu erzeugen. Durch die Integration eines exter-
nen Testfallgenerators in ein Property-Based-Testing Tool ist es uns möglich
Testfälle zu generieren, welche bestimme Testabdeckungskriterien erfüllen.
Dies wird durch die Integration von MoMuT, einem model- und mutati-
onsbasierten Testwerkzeug, als externer Generator in FsCheck gezeigt. Mit
dieser Methode ist es möglich, modelbasierte Mutationstests zu erzeugen
und die Vorteile von Property-Based-Tests zu nutzen.

Durch die Integration von MoMuT konnten wir die Testlaufzeit verringern,
da wir weniger Tests gegenüber dem Zufallstesten benötigen, um gewisse
Modelaspekte abzudecken. Wir beweisen die Durchführbarkeit unseres Pro-
zesses durch das Beispiel eines Regular-Expression-Based-Generators. Schlus-
sendlich haben wir eine Fallstudie durchgeführt, welche MoMuT in FsCheck
integriert, in der wir die Methode dieser Arbeit besprechen und evaluieren.

Schlagworte: Modelbasiertes Testen, Property-Based-Testing, Testfallgene-
rierung, Mutationsbasiertes Testen, MoMuT, FsCheck, Web-Service, Business-
Rule-Models

iii

Acknowledgements

I would like to thank all people that supported me during my studies and
especially during the time I was working on my thesis. I express my deep
gratitude towards my supervisor Bernhard K. Aichernig who raised my in-
terest and helped me learn various new software-testing techniques. This
interest is what ultimately led me to write this thesis. During my work on
the thesis, he provided me with guidance whenever needed.

I want to thank Richard Schumi who helped me a lot with progressing on
the practical parts of my thesis and also for the countless reviews on the
written part of it. This thesis also benefited a lot from his research prior to
and alongside this thesis.

Furthermore, I want to thank Martin Tappler with whom I had various
discussions about this thesis and who pointed me into correct directions
whenever I was straying. Especially his help for MoMuT related topics was
beneficial.

I am thanking the employees of AVL List GmbH who enabled me to validate
the developed technique on an industry case-study. This helped me gain
confidence in the usefulness of this work.

Lastly, I would like to thank Alexandra Ospanova for her mental support,
which helped keep my motivation up through all the up and downs of writ-
ing. Additionally, I would also like to thank her for her proofreading, which
has profoundly improved the language of this thesis.

Silvio Marcovic
Prague, Czech Republic, 03.09.2017

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Statement and Solution . 2

1.3 Related Publication . 3

1.3.1 Prior Research . 3

1.3.2 Contribution of the Author . 4

1.4 Research Project: TRUCONF . 5

1.4.1 Project Summary . 5

1.4.2 Contribution to the Project . 5

1.5 Structure of this Thesis . 6

2 Background 7
2.0.1 Model-Based Testing . 7

2.0.2 Tools . 7

2.1 Mutation Testing . 8

2.1.1 Unresolved Problems . 9

2.1.2 Tools . 9

2.1.3 Model-Based Mutation Testing . 10

2.2 Property-Based Testing . 10

2.2.1 QuickCheck Inspired Tools . 12

2.3 Business Rule Engines . 12

2.3.1 Business Rule and Business Process . 12

2.3.2 Tools . 13

2.4 Coverage Criteria . 13

2.4.1 Mutation-Based Criteria . 13

2.4.2 Model-Based Criteria . 14

3 Testing with FsCheck 15
3.1 A Few Simple Examples . 15

3.2 Shrinking . 17

3.3 Generating Test Data . 18

3.3.1 Custom Generators . 18

3.3.2 Custom Shrinking . 20

3.4 Model-Based Testing . 20

3.4.1 Procedure . 21

3.4.2 Example: Bank Account . 22

4 Testing with MoMuT 27
4.1 Architecture . 27

4.2 Object-Oriented Action Systems . 28

4.2.1 Action System . 28

4.2.2 Object Orientation and Complex Data Types 29

4.3 Abstract Test-Case Generation . 30

4.3.1 Input-Output Conformance of Labeled Transition Systems 30

4.3.2 Refinement Checking . 33

v

5 Using Rule-Engine Models in Model-Based Testing 35
5.1 Translating Business Rule Models into EFSMs . 35

5.1.1 Rule-Engine Models . 35

5.1.2 Extended Finite-State Machines . 38

5.1.3 Translation Function . 39

5.2 Using EFSMs for Property-Based Testing . 40

5.2.1 Property of an EFSM . 42

5.2.2 Integrating EFSM into FsCheck . 43

5.2.3 Optional Attributes . 46

6 Integration of External Test-Case Generators 48
6.1 Interface for External Test-Case Generators . 48

6.1.1 Interface Design . 48

6.1.2 Interface Implementation . 49

6.2 Regex-Based Sequence Integration . 52

6.3 MoMuT Integration . 54

6.3.1 From EFSMs to Object-Oriented Action Systems 55

6.3.2 Test Goals via Observer Automata . 59

6.3.3 Test-Sequence Integration . 62

7 Case Study: Testing a Web-Service Application 65
7.1 Test-Equipment Manager . 65

7.1.1 Found Issues . 66

7.1.2 Experiments . 67

7.2 Unit-Under-Test Manager . 70

7.2.1 Found Issues . 71

7.2.2 Experiments . 72

7.3 Summary and Outcome . 74

8 Conclusion 76
8.1 Summary . 76

8.2 Discussion . 77

8.2.1 Concluding Remarks . 77

8.3 Related Work . 78

8.4 Future Work . 79

Bibliography 80

vi

List of Figures

1.1 FsCheck BRM to FsCheck . 4

1.2 External generator integration . 4

2.1 Model-based testing process . 8

2.2 List reverse example . 11

2.3 List reverse insert example . 12

3.1 FsCheck test case flowchart . 22

4.1 MoMuT::UML architecture . 27

4.2 OOAS syntax . 30

4.3 Bank account LTS . 32

5.1 Flowchart of the approach . 35

5.2 REM syntax . 36

5.3 EFSM bank account . 39

5.4 Traslation REM to EFSM . 40

5.5 Translated model . 41

5.6 Operation definition . 42

5.7 EFSM property . 42

5.8 Incident object . 44

6.1 Test case definition . 49

6.2 Operation sequence . 50

6.3 Component diagram external . 50

6.4 MoMuT Flowchart . 55

6.5 OOAS AST type list . 56

6.6 OOAS VAR block definition . 56

6.7 ACT block definition . 57

6.8 Select build functions . 57

6.9 Dynamic build functions . 58

6.10 ICM REM with select . 59

6.11 Observer automata . 61

6.12 Abstract test-case ICM . 63

7.1 EFSM for REM of TEM . 66

7.2 TEM observer coverage . 69

7.3 EFSM for REM of UUT . 71

7.4 UUT observer coverage . 74

vii

List of Tables

3.1 Computation time generators . 20

3.2 Bank account counterexample . 25

6.1 Regex sequences . 55

7.1 Tem statistics . 66

7.2 MoMuT configuration . 68

7.3 TEM exploration . 68

7.4 TEM issues . 70

7.5 UUT statistics . 71

7.6 UUT exploration . 73

7.7 UUT issues . 73

List of Listings

3.1 List reverse property . 15

3.2 List reverse with float . 16

3.3 Exponentiation implementation . 16

3.4 Exponentiation test . 17

3.5 Wrong multiplication property . 17

3.6 Wrong multiplication property exception message 18

3.7 Upper-case string generator post . 18

3.8 Gen.choose string generator . 19

3.9 Custom arbitrary test case . 19

3.10 String standard shrinker . 20

3.11 String custom shrinker . 21

3.12 Bank account implementation . 22

3.13 Bank account machine . 23

3.14 Bank account setup . 23

3.15 Bank account operation generator . 24

3.16 Deposit operation . 24

3.17 Bank account test case output . 25

4.1 Bank account OOAS . 31

5.1 XML of REM . 37

5.2 Integer generator . 43

5.3 Dynamic operation generator . 44

5.4 Dynamic operation . 45

6.1 External machine . 51

6.2 Regex-based external machine . 52

6.3 Regex-based test method . 53

6.4 Regex-based generator . 54

6.5 ICM OOAS . 60

6.6 ICM OOAS observer . 62

6.7 Dynamic operation generator . 64

1

1 Introduction

1.1 Motivation

Software testing is an important aspect of the software-development process. Utting and Leg-
eard [107] state that software testing generally consumes between 30 and 60 percent of the
overall development effort. Software testing costs are often 50 percent or more of total devel-
opment costs [11, 87]. Fagan [40] point out that less than 50 percent of the effort for operations
labeled as testing is actually spent on verifying that the product meets the requirements. Most
of the effort is consumed doing defect rework or in other words fixing mistakes that were
discovered during testing. This indicates that the testing expenses are distorted from real-
ity. Nevertheless, developing a suitable test framework, finding and fixing mistakes are all
pressing topics in software development.

As an example, the development of Windows Server 2003 had a team of 4400 software
engineers, 2000 of them formed the development team while 2400 were in the test team.
With around 50 percent spent on development and 50 percent spent on testing, software
development is a unique discipline. In traditional manufacturing industries development
accounts for more than 99 percent of the costs. The lack of automation and hence the absence
of process control makes it difficult to control product quality [78].

It is evident that testing software and ensuring its quality consumes a lot of time and
money, and testing costs are still growing. In order to tackle these problems testing strategies
have to become more elaborate.

One of the most critical challenges in testing is the generation of test cases. A great amount
of research was conducted over the past few decades. Far-reaching automation is a way to
ensure software quality in the evermore complex software [20]. There are several different
techniques for automated test-case generation. According to Anand et al. [11] and Keyvan-
pour et al. [64] these techniques include, among others:

• model-based test-case generation;
• symbolic execution and structural coverage testing;
• search-based testing;
• random testing.

The approach for automated test-case generation presented here utilizes two different
tools, which support model-based test (MBT) case generation: FsCheck [9] and MoMuT [67].

FsCheck is a property-based testing (PBT) tool for .NET inspired by QuickCheck [52]. The
tool generates random inputs and tests properties [34]. A property is a high-level specification
of behavior of a code unit. A variety of PBT tools also support stateful testing with their
dedicated frameworks, as does FsCheck. The property of a state machine can be expressed in
following way. The state of the system under test (SUT) conforms to the state of an abstract
model after a sequence of operations is executed on both, the SUT and the model. MBT and
especially FsCheck are further explained in the Chapters 2 and 3.

MoMuT, which stands for MOdel-based MUtation Testing, applies the idea of mutation
testing where faults are inserted into the source code and the effectiveness of a test suite is
measured by how many of the mutated programs are detected. Instead of inserting faults into
the source code MoMuT inserts them into the model of the SUT instead and tries to generate
test cases revealing those faults [67].

Our approach for test-case generation focuses on rule-engine driven web-service applica-
tion. Many web-services store their configuration in XML files. Some even store their business

2 Chapter 1. Introduction

logic such as access rules and workflow details in XML business-rule models (BRM) [91, 92].
These XML definitions can be seen as abstract specifications of the service behavior and

serve us as input for our MBT tools. We transform these specifications into an extended finite
state machine (EFSM). An EFSM model is a generalization of the traditional state machine
model. It is extended by a set of variables and a set of trigger conditions, which when enabled
fire a transition and alter the state of the variables. They are explained in further detail in
Chapter 5.1. The EFSM model serves as an intermediate format from which we can continue
the translation process to prepare the input for either MoMuT or FsCheck. MoMuT is then
executed to find transition sequences for the SUT. FsCheck takes those sequences as input and
randomly generates the data needed to perform those transitions.

This approach is an extension based on the prior research of Aichernig and Schumi [9].
In the prior approach the BRMs were translated into EFSMs and further transformed to serve
as input for FsCheck to generate test sequences with random data. In the approach of the
thesis we extended the initial idea by using an external test-case generator to gain better
control of the test-case generation. We aim to reduce the length and therefore the complexity
of generated test sequences while simultaneously trying to keep the model coverage high.
This would allow us to reduce the test-execution time. How this is accomplished is further
explained in the next sections.

This thesis focuses on MBT approaches. It builds upon existing tools and provides method-
ology to combine those. We aim to use existing test-generation strategies to combine them into
an elaborate testing strategy which helps us reduce the testing time costs. We evaluate our
approach by embedding MoMuT as an external test case-generator into a PBT tool FsCheck
to test a web-service application.

1.2 Problem Statement and Solution

MBT is an effective approach to test software. However, there are still open issues related
to MBT. One of the most difficult parts is the creation of models. Creating models manually
is a complicated task, and two model developers writing a model for an application will
probably come up with different models which will most likely result in different test suits
[44]. Another issue related to models is that they are often defined exclusively designed for
an MBT approach and are not integrated with the software-development process [39].

The first goal of this master thesis is to tackle the stated problems. The model in our
testing approach is derived from business rules which are also used in the implementation of
the system. With the presented approach we focus on how to derive models automatically,
and hence do not need to create models manually. While the models are defined for MBT
we derive them from business rules and therefore have them integrated into the software-
development process. If the system and its rules change, our model representation changes
with them. Of course, this still means that the testing framework needs to be maintained in
case the rule engine syntax or semantic changes.

We apply PBT to generate test sequences and data to execute tests on the system and
our models. PBT has gained a lot of attention and has become the dominant testing tool in
the Haskell community [53]. With the state machine libraries for MBT many large systems
were tested [54]. While some of the studies resort to other tools for the testing approach, no
research was found on the integration of other test-case generation tools into an existing PBT
tool. There were no measurements of test coverage in the early versions of QuickCheck, which
was one of the tool’s major limits [34]. While newer versions of QuickCheck and QuickCheck
inspired tools now support means to investigate the distribution of test data we are not aware
of any PBT tools that generate test sequences based on coverage criteria.

Chapter 1. Introduction 3

The second goal of this thesis was to further improve the approach to have fewer test
cases and thereby reducing the test execution time. We also aimed to gain better control on
how test sequences are generated. This can be accomplished by integrating other (external)
test-case generation strategies into a PBT tool. With MoMuT as an external generator and the
implementation of observer automata we are able to create test cases that are guaranteed to
cover aspects of the model and still exploit the benefits of PBT. Integrating MoMuT is only one
way of incorporating a different test-case generation strategy into a PBT tool. The solution we
present in this work is generic and not only solves the problem of generating test cases that
cover model aspects. The solution can also be applied to tackle additional test goals such as
other coverage criteria, minimizing test generation and execution costs.

The presented approach was evaluated in an industrial case study. A web-service appli-
cation was provided by the industrial project partner of this thesis, AVL List GmbH (AVL)1.
Their tool is used for management of resources, data, and workflows and is further divided
into several modules. The system is further explained in Chapter7. The results in the study
are mainly focused around two of the bigger modules. However, in the progress of the thesis
other modules were also analyzed to help develop the presented approach. The results of the
study suggest that we were able to reach the set goals for this thesis. For the tested modules,
we managed to generate test cases that were able to find faults in the system with shorter
test cases and less execution time as compared to not using MoMuT as an external generator.
However, the case study also shows the limitations of our approach, namely, the expensive
test-case generation time.

1.3 Related Publication

Prior to the work of this thesis, a paper has been written by Aichernig and Schumi [9]. It
covers the base on which this thesis is built upon. As a result, some techniques and concepts
discussed in this thesis have already been discussed in a similar form beforehand. Especially
parts of Chapter 5 are based on this prior research.

The author of this thesis has been a co-author for a publication related to PBT [7]. This
paper has been presented at the 13th Workshop on Advances in Model Based Testing (A-
MOST 2017)2 in Tokyo, Japan on 17 March 2016. It contains important key concepts that are
presented in this thesis.

These two publication serve as a clear distinction between prior research an contribution
of the author. Therefore, they will be discussed here shortly.

1.3.1 Prior Research

Property-Based Testing of Web Services by Deriving Properties from Business-Rule Models
This paper discusses how to use a PBT tool to automatically derive generators and models
from rule-engine driven web-service applications. XML BRMs are parsed into EFSMs, which
serve as a intermediate format between the original models and the PBT tool. An EFSM is
a very general concept and it is easy to infer model-based tests from it, which makes it a
convenient format for in the translation process. An EFSM model is further translated into the
specification and command needed for FsCheck. This enables stateful testing with random
input data. The SUT is tested by executing those random sequences and searching for a
difference between the specification’s and the SUT’s state. The test case fails if a difference
was found or if an exception occurred during the run; otherwise, the test case passes. An
overview of the process is illustrated in Figure 1.1.

1https://ww.avl.com
2http://a-most17.zen-tools.com

https://ww.avl.com
http://a-most17.zen-tools.com

4 Chapter 1. Introduction

Figure 1.1: Overview of the steps for the FsCheck command sequence generation for
business-rule models.

TransformationRule Engine
Models

Extended
Finite State
Machines

Property-based
Testing Tool Model-based Tests

Transformation
Object-

oriented Action
Systems

OOAS
Mutants

MoMuT
Backend

Abstract
Test Cases

PBT Tool
Integration

Mutation
Operators

Observer
Automata

OOAS
Specification

Legend

Existing Approach

Contribution

Figure 1.2: Overview of the steps for the integration of an external test-case generator.

The method has been applied to the BRMs of an industrial web-service application. The
author of this thesis has helped to test the modules and to discover faults in the SUT.

1.3.2 Contribution of the Author

Property-Based Testing with External Test-Case Generators This paper focuses on combining
the approach from the previous research with external test-case generator. A generic approach
is presented on how to integrate external tools with PBT tools, by giving the example of ap-
plying MoMuT as an external test-case generator and integrating the produced test sequences
into the PBT tool FsCheck. With having more control over the test-sequence generation it is
possible to produce meaningful operation sequences for test cases. With this approach, we
are able to generate test-cases that follow certain coverage criteria. This allows us to reduce
the overall test-execution time because coverage controlled tests are in general shorter than
random tests. An overview of the approach is presented in Figure 1.2. In addition the figure
also shows a clear distinction between prior research and contribution of the author of this
thesis.

A case study on the same system as in the prior research was performed to validate the
new approach. The case study was further extended by testing additional modules.

Chapter 1. Introduction 5

1.4 Research Project: TRUCONF

This work is part of a research project called TRUCONF3. This section will contain a summary
and goals of the project and explain how this thesis contributes to the project.

TRUCONF stands for trust via cost function-driven model-based test-case generation for
non-functional properties of systems of systems and is a research project which is funded by
the Austrian Research Promotion Agency (FFG). The project has a planned duration of three
years which started in November 2014 and will end in January 2018. There are two research
and one industrial partner contributing to the project: The Austrian Institute of Technology
(AIT)4, the Institute for Software Technology (IST) at the Graz University of Technology and
the industrial partner AVL.

1.4.1 Project Summary

The project is driven by a use case of AVL. They developed a system, called AVL Testfac-
tory Management Suite (TFMS) 5, where multiple test devices are combined into test beds
per customer needs. The automation system they developed controls the test beds and the
plugged-in devices. The tool is divided in multiple models for management of resources, data
and workflows and interacts with test-automation-systems, project-management systems and
unit-under-test databases. The system is explained in more detail in Chapter 7.

Currently, testing of the automation system is done manually, which is a time-consuming
process that also cannot guarantee coverage of worst-case scenarios. In a lot of cases issues
arise from shared use of limited resources. For example, bandwidth and memory. For every
new software release a lot of manual effort is invested. Therefore, they try to shift from manual
to automated testing by applying and extending MBT techniques.

Since sharing of limited resources was identified as one of the causes of issues, high con-
sumption of resources is a good indicator to reach erroneous scenarios. An approach will be
developed which extends an existing MBT generator with support for resource-consumption
testing. With this approach they are moving from testing of functional properties to testing
non-functional properties. The project will develop tool support to automatically derive re-
source consumption data from a SUT and connect to a given behavior model. The main goal
of the project is to create test-case generation for non-functional requirements and further use
the data from test-case execution to tune the models with the help of cost-function refinement.

1.4.2 Contribution to the Project

This section will briefly explain how this thesis contributes to the TRUCONF-project. In this
thesis we automatically derive models for systems by combining MBT and PBT approaches.
We further extend these models to reduce the execution time of test sequences by integration
MoMuT as an external test-case generator.

This approach contributes to the first goal of the project. While the approach of this thesis
does not test non-functional requirements as stated as a goal, it provides the automatically-
derived models and also some of the needed tool support. The second goal of the project is not
covered by any content of this thesis. In addition, the approach of this thesis was evaluated as
part of a case study. In the case study we tested parts of AVL’s systems and were able to find
potential issues in them. They are further explained in Chapter 7. This thesis extends the test
coverage and shows possible limitations of the SUT.

3http://truconf.ist.tugraz.at
4https://www.ait.ac.at
5https://www.avl.com/-/avl-testfactory-management-suite-tfms

http://truconf.ist.tugraz.at
https://www.ait.ac.at
https://www.avl.com/-/avl-testfactory-management-suite-tfms

6 Chapter 1. Introduction

1.5 Structure of this Thesis

The rest of this master’s thesis is structured as follows:
Chapter 2 gives a broad overview of the theory and technologies on which this thesis will

build upon. It contains an introduction of the applied testing strategies and on the theory that
was needed to perform and evaluate the case study.

Chapter 3 introduces FsCheck, a PBT tool written in F#, which is easily accessible from
.NET code. The presented approach of this thesis is implemented into FsCheck and it is
therefore important to understand how this specific PBT tool operates. Mainly, its features of
generating random values and forming test sequences to perform MBT are explained.

Chapter 4 describes a model-based mutation-testing tool called MoMuT. MoMuT was se-
lected as the external test-case generator for our case study. The chapter aims to provide
knowledge about the language and the test generation process of MoMuT. Chapter 3 and
Chapter 4 provide a good basis to understand the main contributions of this thesis.

Chapter 5 and Chapter 6 form the main contribution of the thesis. Chapter 5 explains
how test cases can be automatically derived from rule-engine models. It is shown how a REM
can be translated into an appropriate format for a PBT tool to perform MBT. The focus of
the chapter lies on the translation steps necessary and on the explicit implementation steps
required to utilize FsCheck for MBT.

Chapter 6 focuses on extending the methods presented in the previous chapter by imple-
menting external generators. An interface is developed to implement the external generators
into PBT tools. Two examples of external generators are given to show the usage of the inter-
face. The first external generator is a simple regular expression-based generator and illustrates
the use of the interface. The second external generator is MoMuT. It is shown how MoMuT
sequences are executed within FsCheck.

Chapter 7 contains a case study that evaluates the methods from Chapter 5 and compares
them to the method with MoMuT as an external generator. It provides evidence on the
generation characteristics and discusses the benefits and drawbacks of both strategies.

Chapter 8 gives a summary and an overview of related work. PBT of web-services, as well
as a combination of other tools with PBT, will be discussed. Finally, a discussion of findings
and future work for implementing external test-case generators concludes this thesis.

7

2 Background

This chapter provides theory and technologies on which this work is built upon. In Sec-
tions 2.0.1, 2.1 and 2.2 an overview of the relevant testing strategies is given. Then, in Sec-
tion 2.3 business-rule models (BRMs) and related terms are explained. The system analyzed
in the case study is built on them. Finally, Section 2.4 explains and discusses coverage criteria,
which are widespread metrics to evaluate test suites.

2.0.1 Model-Based Testing

Instead of writing test cases manually, the designer writes an abstract model. The test cases are
then generated from the model. Model-based testing (MBT) can be applied to different scales
of the SUT ranging from smaller units up to the whole system. Binder et al. [22] surveyed
a hundred MBT users. The survey revealed that most people apply MBT for system testing
(almost 80 percent) and integration testing (50 percent). Dias Neto et al. [39] made a survey of
MBT approaches. 66 percent of all approaches were system level approaches while integration
testing made up for 22 percent.

The MBT process can be divided into the following steps, as shown in Figure 2.1 [107].
The first step of MBT is to write a model. The model is an abstract representation of the

SUT. It should be smaller and simpler than the SUT. It serves as a specification and should
focus on the key aspects that the designer wants to test [74, 107].

The next step is generating tests with adequate criteria. Since possible input grows very
large even with small models, appropriate selection criteria have to be chosen. There exists a
wide range of coverage criteria. Data-flow and control-flow criteria have been adopted from
code-based testing. Transition systems describe potential behavior of systems and consist of
states and transitions, which may be labeled. Labeled transition systems(LTSs) are explained
in more detail in Chapter 4. Transition-based notation makes it possible to apply graph-based
coverage criteria such as node or edge coverage [108].

If the coverage criteria are not satisfying, additional abstract test cases can be added man-
ually. The set of tests is then transformed into concrete tests, which are then run on the SUT.
Finally, the results of the test run should be analyzed. It is important to note that online tools
usually merge the generation of abstract tests with the transformation and execution process
while offline tools do this step-by-step [107].

In order to analyze the results of the test run we can examine the behavior of a system with
an oracle. Given an input for an SUT the oracle distinguishes between the correct behavior
and potentially incorrect behavior of the system. There are different techniques for oracle
automation. It is possible to create the oracle from the model. If the oracle automation is not
adequate the human serves as an oracle. He may be aware of specifications and expectations
that are hard to quantify. Especially during the first executions of a test set, errors arise from
the adaptor code or the model. Certainly, an oracle derived from the model can only be
adequate if the model itself is a correct representation of the SUT [19, 107].

2.0.2 Tools

In this section, a few tools are listed that help create model-based tests. AETG [35] is a tool
for combinatorial testing. It contains an algorithm to achieve pairwise coverage, which results
in a huge reduction of test cases. The oracle has to be provided manually and it supports
offline tests. SpecExplorer [109] is a tool developed within Microsoft Research which supports
state-based models and both, online and offline testing.

8 Chapter 2. Background

Figure 2.1: The model-based testing process (testing tools are in boxes with very bold
lines).

UPPAAL TRON is an MBT tool for real-time systems, which uses UPPAAL as its model
checker. UPPAL was developed at the University of Uppsala and Aalborg, hence the name.
The tool checks if the SUT conforms to a specified model performing input-output confor-
mance (ioco) checks while taking time constraints into account. Expressing the specification
as extended finite state machines (EFSM) with a set of real-valued clock-variables allows the
tool to keep track of time-related behavior [49, 69]. Ioco will be explained in Chapter 4 and
EFSMs in Chapter 5 since the parts of this thesis that rely on the background are introduced
there.

Other tools are Torx by Tretmans and Brinksma [106], which also uses ioco to select their
test cases, and Conformiq Qtronic by Huima [55], which uses symbolic execution to reduce
the model space that needs to be executed. Those tools are not further explained since their
details are not directly relevant to the content of this thesis.

2.1 Mutation Testing

The idea of program mutation has a long history. It goes back to 1971 when it was proposed
by Lipton [73]. In mutation testing, a set of elementary mutation transformations are applied
to introduce faults of certain types into the program. The goal is to construct a set of tests
which are able to distinguish between the original program (SUT) and non-equivalent mutated
programs [51].

Note that we apply a precise meaning to the term fault and distinguish between other
terms that are commonly used in similar context. In the following, we distinguish between
the terms Mistake, Fault, Error and Failure and use them as defined by Radatz et al. [88].

Error. The difference between a computed, observed, or measured value or condition and

Chapter 2. Background 9

the true, specified, or theoretically correct value or condition. For example, a difference
of 30 meters between a computed result and the correct result.
Fault. An incorrect step, process, or data definition. For example, an incorrect instruction
in a computer program.
Failure. An incorrect result. For example, a computed result of 12 when the correct result
is 10.
Mistake. A human action that produces an incorrect result. For example, an incorrect
action on the part of a programmer or operator.

The general idea is that the faults generated by mutation testing represent mistakes pro-
grammers often make. Competent programmers do not create random programs. Through
many iterations, they create programs that are close to what they intend the program to look
like. Test data that distinguish all programs differing from a correct one by only simple errors
are so sensitive that they also implicitly distinguish ones with more complex errors. This is
called the coupling effect [37]. Therefore, mutation testing usually relies on simple mutants
only.

The adequacy of a test suite can be measured by a mutation score. The score is calculated
by dividing the number of mutants killed by the number of non-equivalent mutants [36].
A mutant is killed if the test suite identifies a different behavior compared to the original
program.

2.1.1 Unresolved Problems

While mutation testing is an effective way to evaluate a test suite, it has a number of problems.
One is the high computational cost of executing the mutants against a test set. A second one
is the equivalent mutant problem.

The most apparent way to reduce the costs of execution is to reduce the number of mutants.
Raunak et al. [90] show that with off-by-one loop mutation the costs to traditional mutants
can be reduced while maintaining an adequate test suite. They produced 89.15 percent fewer
mutants while the mutation scores had a correlation coefficient of 92.28 percent. This type
of cost reduction is called constrained mutation. There are other methods such as randomly
selecting a subset of mutants [111].

Equivalent mutants are mutants that have no functional effect on the program and thus
cannot be killed [84]. Examples are mutations in unreachable code and mutating code like
a = ¬b to a 6= b. Methods to solve the problem include compiler optimization techniques,
program slicing, and many others. A comprehensive literature review was done by Madeyski
et al. [76].

The comprehensive survey of Jia and Harman [60] found evidence that the literature on
mutation testing is growing. They state that even though mutation testing is still suffering
from several problems, it is reaching a maturity not previously witnessed in the field.

2.1.2 Tools

A few mutation tools are discussed in this section. The first mutation tool was developed by
Acree et al. [1] in 1980 at the Yale University. They presented a mutation system and mutation
operators for Fortran and Cobol.

There are also mutation-testing tools for higher level languages. A set of object-oriented
mutation-operators for C# was introduced and implemented into the tool CREAM (Creator
of Mutants) [38]. Mutation operators have also been proposed for SQL, Java, PHP and many
other high-level languages [30, 65, 98].

10 Chapter 2. Background

Since mutation testing became a popular technique for testing software there exists a vast
variety of tools that are not covered in this section. Jia and Harman [60] conducted a survey
of the development of mutation testing and explain a variety of tools. The interested reader
may refer to this source for information on additional tools.

2.1.3 Model-Based Mutation Testing

As mentioned in the introduction, the tool used in this research is MoMuT. MoMuT combines
model-based testing, where an SUT is tested for conformance with a model specifying the
intended behavior, and mutation testing, which intentionally alters the model of the system to
ensure a fault-oriented testing strategy. Compared to tradition mutation testing, the mutations
are not performed on the source code of the SUT but on the model. With mutating on a high
level of abstraction black box testing is possible since the internal structure of the SUT is not
needed to design a model.

MoMuT is able to generate its tests from unified modeling language(UML) state machines.
UML is a widespread modeling language that helps to visualize a system’s design in a normal-
ized way. The UML state machines are translated into action systems and further interpreted
as LTSs. So far MoMuT only supports offline testing [67, 66]. The tool is explained in more
detail in Chapter 4.

2.2 Property-Based Testing

In the past, several researchers used the term property-based testing (PBT) to describe their
testing techniques. Some of the techniques aim to produce testing criteria based on abstract
models [42, 86]. In 1999 the influential PBT tool QuickCheck was released [34]. It is written in
Haskell and quickly became established in the testing community. Nowadays the term PBT
is usually understood as a synonym for QuickCheck and re-implementations of QuickCheck.
Tools from the QuickCheck family and previously reported methods have in common that
they derive test cases from specifications of a code unit. This thesis will use the term PBT to
describe the techniques of the QuickCheck family.

A property is a high-level specification of the behavior of a code unit. Properties are
checked by executing the code unit with a range of data points. If no execution violates the
property we assume the property holds. If a single contradiction is found the property does
not hold. A common example of a property is that if the reverse is applied twice to a list
it will be equal to the original list. This is shown in Figure 2.2 [110]. More general, when a
function f has an inverse f�1 then

8x 2 X
⇣

f�1 (f (x)) = x
⌘

where X is the set of possible inputs. In our example, the inverse of the reverse is con-
veniently reverse itself. These properties are tested on random input which is supplied by
test-data generators. Let

C = (c1, c2, ..., cn) : ci 2 Y

be a collection where the elements are elements of a set Y such as the set of real numbers
R. Then we can write a property in the following manner:

8C : C = List.reverse(List.reverse(C))

Chapter 2. Background 11

[1;2;3] [3;2;1]

List.reverse x

List.reverse x

Figure 2.2: The reverse of the reverse is equal to the original list.

A generator generates the data points for a certain type of input. In the above example, the
generator will create collections that contain elements of the set Y. Some common generators
are already implemented in the framework. However, a user can create his own generator.
QuickCheck then generates test data through the generator and tries to find a counterexample
for the property. If no counterexample is found for a sufficiently large number of tests we
assume that the property holds.

We will now try to define a second useful property for our List.reverse function. For this,
we introduce two functions. List.insert(C, i, n), which will add an item n at a specific index i
of the list and List.count(C) which will return us the number of items currently in the list. The
next property will make use of the fact that certain functions can be combined in a different
order but still lead to the same final result. For example, taking a step to the right and then to
the front is the same as taking a step to the front and then to the right. We will compare the
equality of the resulting lists between the following two combinations of functions.

1. Inserting an item n into the list at the position i and reversing the list.
2. Reversing the list and inserting n at the position List.count � i

We can see that our case is slightly more complicated as the example with taking steps as
we need to calculate the position for the List.insert function anew for both cases. However,
the principle still applies that we are changing the order of the function calls and get to the
same result. We will make use of the previous definition of C where each element is part of a
set Y. Further, we introduce i as an index and n as the element to insert, which is also part of
the set Y. We can then write a property as follows:

8C, 8n, i = 0, .., List.count(C) :List.reverse(List.insert(C, i, n)) =
List.insert(List.reverse(C), List.count(C)� i, n)

The property is also shown in Listing 2.3 with example values. In the first case, we add
four after the first position into the list [1, 3, 7, 6] and receive [1, 4, 3, 7, 6] and then reverse it to
receive [6, 7, 3, 4, 1]. In the second case, we first calculate our index to make things easier to
explain. We subtract the position (one) from the number of elements in our original list (four)
and receive three as the index to insert. We reverse the list to [6, 7, 3, 1] and insert the element
four after the third element to receive [6, 7, 3, 4, 1]. In both cases, we receive the same final
result. Again as for the last property, we test this one with an appropriate amount of random
inputs and assume that the property holds.

Another important feature of QuickCheck is shrinking. Randomly generated test inputs
usually contain some amount of irrelevant data (noise) which have no influence on the fact
that the test case is failing. QuickCheck tries to reduce this noise through shrinking the input
values and creating a more comprehensive and simpler counterexample [71].

There exists a wide range of QuickCheck adaptions for other languages. Some of those
tools support stateful testing and therefore enable MBT. In the work of Hughes [52] test cases

12 Chapter 2. Background

[1;3;7;6] [6;7;3;1]List.reverse x

List.Insert(3,4) x

[6;7;3;4;1][1;4;3;7;6] List.reverse x

List.Insert(1,4) x

Figure 2.3: Combining functions in a different order might lead to the same final result.

consist of a sequence of operations which can execute functions with side-effects. After a test
is run, it should be made sure that the test finishes in a clean state in order to start the next
sequence of operations from a consistent initial state.

2.2.1 QuickCheck Inspired Tools

Some important tools to note are Quviq QuickCheck [16], a re-design for Erlang, ScalaCheck
[83], a library written in Scala, SmartCheck [85], a Haskell library that builds on the QuickCheck
back-end and generalizes shrunk values and FsCheck [96], a tool written in F# for .NET.
FsCheck will be used in this thesis and is explained in more detail in Chapter 3.

2.3 Business Rule Engines

This section describes the term business rule and business process, how they differ and
presents languages and tools to help model and embed them in software.

2.3.1 Business Rule and Business Process

A business rule is a statement that defines or constrains some aspect of the business. It is
intended to assert business structure or to control or influence the behavior of the business
[101]. An important characteristic of business rules is that they tend to change often, more
often than the underlying business object [15]. The following sentence is an example of a
business rule.

A customer gets a 10 percent discount if he orders more than five times. Embedding
business rules into the application process is still common practice. This has a negative impact
on the maintainability of business logic because business rules tend to change quite frequently.
Separating the business rules from the application code greatly improves the maintainability
[92].

A business process clearly describes the work performed by all resources involved in cre-
ating outcomes of value for its customers and other stakeholders [26].

Ross [93] states that a rule is not a process and not a procedure. Rules should not
be contained in either of these. Rules apply across processes and procedures. Business-
rule management-systems generate assertions or take actions based on business rules [48].
Business-process management-systems take an application through stages in a workflow [95].

Chapter 2. Background 13

It is important to note that workflow-based applications sometimes incorporate embedded
rule engines. Business rule engines can also embed workflow details.

2.3.2 Tools

There exists a vast variety of tools that embed processes and rules in business logic. The most
notable languages are the Business Process Modeling Language [14] and the Business Process
Execution Language [13], which is based on IBM’s language: Web Service Flow Language [70]
and Microsoft’s language: Xlang [100]. Often those languages are used to enable coupling of
web-services from different providers as shown in the studies of Rosenberg and Dustdar [91]
and Charfi and Mezini [31].

In our case study business rules are stored in XML files as BRMs. The abstract models
needed for MBT are derived from these models. The BRMs in the case study are a custom
implementation and will be explained in Chapter 5.

2.4 Coverage Criteria

Code coverage is a measure that describes to which degree the source code of a program is
executed (covered). The metric is widespread in any stage of testing. Test suites that never
execute a certain code fragment will most likely not reveal any faults lurking there. Code
coverage can be measured in a variety of ways. This includes structure-based coverage such as
statements, lines, conditions, methods and classes [112]. This can also include more complex
coverage criteria such as not only considering if a condition evaluates to true or false but also
the evaluation of all the sub-expressions of the condition. Dataflow-based criteria can evaluate
if a test case covers a certain de f � use association of a variable. This is a pair consisting of a
definition and a use-location, such that there is a path between them that does not redefine or
undefine the location [56].

Code coverage of a test suite can indicate its fault detection capability. A test suite with
high code coverage has more of its code executed which suggests a lower chance of con-
taining undiscovered faults. The study of Inozemtseva and Holmes [57] presents that a high
correlation between coverage criteria and effectiveness exits when the size of the test suite is
not controlled. However, when size is controlled the correlation drops. For the controlled
approach test suites were compared maintaining the same constant test coverage while mea-
suring other metrics. In the uncontrolled approach, the coverage was not applied to limit the
test suites. Their results suggest that coverage should not be used as a quality target. Dif-
ferent coverage criteria such as branch and state coverage have shown similar results. Code
coverage-criteria can only be applied in white-box testing-approaches, which presents another
significant limitation. But most importantly, coverage criteria can only measure existing code.
They are not suited for indicating faults arising from missing code.

2.4.1 Mutation-Based Criteria

A widespread measurement for test suite effectiveness is the mutation score as described pre-
viously in Section 2.1. In the empirical studies of Andrews et al. [12] and Just et al. [63] it was
found that the coupling effect between real faults and mutants exists in general, even when
code coverage is controlled. They also state that some faults are not covered by typical mu-
tation operations such as faults that are caused by extra code or algorithms that do not work
correctly. Non-coupled faults amount for 17 percent of the mutants. This shows the limita-
tion of current mutation analysis. Even though mutation-based approaches show limitations,
mutation score should be a better predictor of real fault detection than code coverage.

14 Chapter 2. Background

2.4.2 Model-Based Criteria

Since this research presents an MBT approach for generating a test suite, it is important to
consider test selection criteria for models. Utting and Legeard [107] describe the major test
selection criteria that are common in MBT, how to combine them and present case studies.
One group of prominent criteria are the transition-based coverage-criteria. They are structural
criteria that have been developed for transition-based modeling notations such as finite state
machines, extended finite state machines and LTSs.

Transition-based models are made up of states and transitions. Depending on the notation
a transition may be labeled with various kind of information. The most common criteria are
the all-states coverage and the all-transitions coverage. Every state/transition of the model
has to be visited at least once.

In recent studies, model-based and specification-based criteria were used and showed
good results [10, 79, 94]. However, no exhaustive surveys on how MBT criteria perform
compared to others were found.

15

3 Testing with FsCheck

In this section, FsCheck is explained by showing examples of properties. Writing properties
can be seen as writing a testable specification of the program. FsCheck is written in F#,
however, examples provided in this section will be written in C# unless otherwise stated. The
explanation and examples are based on the FsCheck version 2.5.0. Since the tool is still under
development future functionality might differ from the one described here.

3.1 A Few Simple Examples

In our examples, we are making use of lambda(l) expressions. A l-expression is an anony-
mous function. It can be written locally and passed as an argument. The theoretical back-
ground of those expressions is l-calculus. It is a formal system based on function abstrac-
tion and application. For example, the following l-term l. ⇤ 2x is a l-abstraction for the
function f (x) = x ⇤ 2. It is an anonymous function taking a single input x and substi-
tuting it with the term x ⇤ 2 [18]. One can see the similarity to the following C# syntax
Func<int,int> times2 = x => 2 * x. One main difference is that in C# we have to define the
type for the variables used. Both input and output types have to be defined. A more detailed
explanation of l-expressions for C# can be found in Hilyard and Teilhet [50].

Example 1: We will consider the simple example presented in Section 2.2. We will test the
function Reverse with a property that checks that the reverse of the reverse of a list is the list
itself. This is shown in Listing 3.1. The listing consists of two parts. The first one is a function
that represents our property. The second part is a for-all quantification over integer arrays
that tests our property. The example can be read as follows: Test if for all integer arrays the
property revRevIsOrig holds. FsCheck randomly generates integer arrays and checks if the
property returns true for all cases. If FsCheck does not encounter an error we cannot assume
that a property truly holds. It just means that FsCheck could not find an error for a number
of randomly generated values. FsCheck may report false negatives. However, we can be fairly
confident that a property holds if the generated values are meaningful and the number of tests
is big enough. A method that checks a property with randomly generated input is referred to
as a parametrized or generative test.

It is currently not possible to generate elements for generic types with FsCheck. In our
previous example, we explained the Reverse function. It takes an IEnumerable<TSource> as
input and returns the same type. Our property projects from integer arrays to boolean values.
When writing FsCheck test-cases we have to limit ourselves to one type. We chose to imple-
ment the property for the type integer arrays. Therefore, we are not testing the full range of
values the function Reverse supports. The user has to carefully choose the data types manu-
ally to test the function’s behavior. If we change the input type from using integer arrays to
float arrays, we will see that in C# the example behaves the same. However, if we take a small
excursion into the F# language we will see that the example can behave differently. Since F# is
also part of the .NET framework a lot of functions behave similarly to C# examples. However,

1 Func<int[],bool> revRevIsOrig =

2 xs => xs.Reverse().Reverse().SequenceEqual(xs);

3 Prop.ForAll(revRevIsOrig).QuickCheck();

Listing 3.1: Check property: reverse of the reverse of a sequence is the original sequence.

16 Chapter 3. Testing with FsCheck

1 let revRevIsOrigFloat (xs:list<float>) =

2 List.rev(List.rev xs) = xs

3 Check.Quick revRevIsOrigFloat

Listing 3.2: List reverse property for floats.

1 public static int Pow(int x, uint n) {

2 int y = 1; //result initialization

3 while (true) {

4 if ((n & 1) != 0) y *= x; // if n is odd multiply by x

5 n = n >> 1; // position of the next n bit

6 if (n == 0) return y; // if there are no more bits return y

7 x *= x; // exponent for the next n bit

8 }

9 }

Listing 3.3: Calculation of xn with binary decomposition for unsigned exponents.

the F# implementation in Listing 3.2 FsCheck can falsify our property. Floating-point num-
bers can have the value NaN (not a number) and since NaN 6= NaN comparing them with
the equality operator will falsify the property with the simple array [NaN]. We could also
use the SequenceEqual function as in C#, but since F# has by default implemented structural
equality operators, we usually use those. In C# we usually do not use the equality operator
for collections since they usually compare the references of the collections. Therefore, we used
SequenceEqual in our C# example, which calls the Equal method for each element, which fur-
ther returns true if both elements are NaN [96] 1. This example should give us an insight as
to why it is important and also very challenging to find data types to test our properties.

Finding meaningful properties can be a challenging task. For testing a function that adds
two numbers using the + operator it is not advisable to apply the same operator in the test
case. Testing an implementation with duplicating the code is usually a bad idea. In our pre-
vious example, we created a property based on the function’s inverse. This is a useful pattern
for several operations such as serialization/de-serialization read/write. An explanation of
patterns for finding properties can be found in Wlaschin [110]. Halleux and Tillmann [47]
present common test patterns for Microsoft’s Pex [103]. Some of these patterns explained are
applicable for PBT as well.

Example 1: In the next example we will test an exponentiation function. We will analyze
the implementation of [62] as shown in Listing 3.3.

This time, to find our properties, we will take a look at mathematical definitions using
elementary algebra. Mathematical properties are often a good basis to implement properties
for FsCheck and can often be easily found in the literature. The four properties that will
specify exponentiation are the following:

1. Initial condition: b1 = b
2. Recurrence relation: bn+1 = bn ⇤ b
3. Associativity bn+m = bn ⇤ bm

4. Zero exponent b0 = 1

A parameterized test that checks the four properties is shown in Listing 3.4. The method
1https://referencesource.microsoft.com/#mscorlib

https://referencesource.microsoft.com/#mscorlib

Chapter 3. Testing with FsCheck 17

1 [TestMethod]

2 public void PowTestFsCheck() {

3 Func<int, bool> ZeroExponent = b => Pow(b, 0) == 1;

4 Func<int, bool> InitialCondition = b => Pow(b, 1) == b;

5 Func<int, uint, bool> RecurrenceRelation = (b, n) =>

6 Pow(b, n + 1) == Pow(b, n) * b;

7 Func<int, uint, uint, bool> Associativity = (b, n, m) =>

8 Pow(b, m + n) == Pow(b, n) * Pow(b, m);

9

10 Prop.ForAll(ZeroExponent).QuickCheckThrowOnFailure();

11 Prop.ForAll(InitialCondition).QuickCheckThrowOnFailure();

12 Prop.ForAll(RecurrenceRelation).QuickCheckThrowOnFailure();

13 Prop.ForAll(Associativity).QuickCheckThrowOnFailure();

14 }

Listing 3.4: Test of properties for exponentiation using FsCheck.

1 [TestMethod]

2 public void MultPropertyTest() {

3 Configuration config = Configuration.VerboseThrowOnFailure;

4 config.Replay = FsCheck.Random.mkStdGen(50);

5 Func<int, int, bool> WrongMultiplyProperty = (a,b) =>

6 a == 0 || b == 0 || a * b >= a;

7 Prop.ForAll(WrongMultiplyProperty).Check(config);

8 }

Listing 3.5: Wrong multiplication property which shows how FsCheck shrinks values.

is annotated with TestMethod. A unit-test framework is, therefore, able to identify the method
as a test case. FsCheck will throw an exception if one of the properties does not hold. Each
property is run with 100 randomly generated inputs by default. The first tests start with small
values and get larger the closer they are to the last test case. Properties can also be written in
a class as a static method. FsCheck supports checking all public methods on the given type
that have a testable return type.

3.2 Shrinking

Example 1: We will now look at what FsCheck does if it encounters an error. A property
for multiplication is shown in Listing 3.5. Using the Configuration VerboseThrowOnFailure has
two implications. If it finds a counterexample a System.Exception is thrown and every test case
up to this point including the failing one is printed. Afterwards, execution is stopped. The
Quick Configuration would only print the failing test case. Note that we set the seed of the
random generator in order to receive the same test cases every time we run the test. This can
be helpful for debugging.

We defined the property WrongMultiplyProperty wrong as we were only considering pos-
itive integers. However, we defined it for all integers as shown in the following equation:

8a, b 2 Z : a 6= 0 ^ b 6= 0 ! a ⇤ b � a

18 Chapter 3. Testing with FsCheck

1 Falsifiable, after 3 tests (2 shrinks) (StdGen (51,1)):

2 Original:

3 (-2, 3)

4 Shrunk:

5 (-1, 2)

Listing 3.6: Exception message of wrong multiplication property.

1 public class MyArbs {

2 public static Arbitrary<string> StringLowerCase() {

3 return Arb.From(Arb.Default.String().Generator

4 .Where(s => s != null && Regex.IsMatch(s, "ˆ[A-Z]+\$")));

5 }

6 }

Listing 3.7: An upper-case string generator using the Where-filter.

Cases where a is negative and b is bigger than 1 will produce a negative number which
is always smaller than a. An example of an exception message that FsCheck might throw is
shown in Listing 3.6.

Original is the counterexample FsCheck has found. Shrunk shows FsCheck’s attempt to
find the minimum counterexample that still fails the property. In our case it succeeded, (-1,2)
is indeed minimal. A shrinker for the data type T has the signature Func<T,IEnumerable<T>.
Given a value, a shrinker produces a sequence of smaller values. If FsCheck finds a value in the
sequence that still produces the same error it will take this value as the new counterexample
and continue its recursion until it cannot find any smaller values. This local minimum is then
the value Shrunk in the exception message.

3.3 Generating Test Data

The test data FsCheck provides is produced by test data generators. FsCheck defines default
generators and shrinkers for common types. Both are packed together in an arbitrary instance.
FsCheck reads the method signature of the property to test and performs a lookup on the
parameter types to identify which Arbitrary instance it has to select. FsCheck is also able
to generate test data for discriminated unions, record types, and enumerations by default.
However, if the user wants to use a custom arbitrary the Arbitrary needs to be explicitly added
to FsCheck in order to be found during a lookup on the parameter types. This principle is
called registering and is done via the command Arb.Register<T>();, where T is the type of a
class that defines the arbitraries as static members. Registering is usually needed for custom
types since they neither have a default generator nor shrinker.

3.3.1 Custom Generators

Example 1: In the next example different ways to generate only upper-case strings are shown
and compared.

The first approach filters values after they are generated. Later in this section, it will be
shown why this is not a good solution for this specific problem. An example implementation
using regular expressions is shown in Listing 3.7.

Chapter 3. Testing with FsCheck 19

1 public static Gen<string> UpperCaseStringGenerator(int size) {

2 Gen<int> intGen = Gen.Choose(’A’, ’Z’);

3 var gens = new List<Gen<char>>();

4 for (int i = 0; i < size + 1; i++) {

5 gens.Add(intGen.Select(c => (char)c));

6 }

7 Gen<IEnumerable<char>> charSeqGen = Gen.Sequence(gens);

8 return charSeqGen.Select(cs => new String(cs.ToArray()));

9 });

10 }

11 public static Arbitrary<string> ArbUpperCaseString() {

12 return Arb.From(Gen.Sized(i => UpperCaseStringGenerator(i)));

13 }

Listing 3.8: String generator for upper-case strings using Gen.choose.

1 [TestMethod]

2 public void UpperCaseTest() {

3 Arb.Register<MyArbs>();

4 Func<string, bool> AllUpperCaseLetters = s => Regex.IsMatch(s, "ˆ[A-Z]+\$");

5 Prop.ForAll(AllUpperCaseLetters).VerboseCheckThrowOnFailure();

6 }

Listing 3.9: Test case that shows the use of a registered arbitrary.

The second approach does not take the default string generator but rather defines its gener-
ator using Gen<int> Choose(int l, int h). Generators are usually built from this function. It
makes a random choice between the interval of l and h inclusive. The generator and arbitrary
are shown in Listing 3.8.

As stated previously if a property is checked it starts with small examples and increases
its size over time. The standard range is between 0 and 100. Therefore, we use size + 1 in
the for-loop to ensure no strings with length 0 will be created. The lower and upper bound
can be changed in the Configuration with which the property is executed. This size parameter
is passed to our generator as shown in Line 12. Our generator creates a sequence of char
generators which can only produce values between the chars ’A’ and ’Z’. We then sequence
the given list of generators into a generator of a list in Line 7. With Select, we then map from
the generator of a char sequence to a string generator.

A test case using our custom string generator is shown in Listing 3.9. First, we register
one of our previously defined custom arbitraries. Then we create a function which will serve
as our property and finally we check if the property holds for all strings.

We will see two main differences between a test case using a Where-filter and one using a
custom generator if we look at the output of both test cases. The first difference is the length
of the generated strings. The second one is a speed difference. Since we limited the space
of possible strings significantly the first approach has hard times finding appropriate strings.
It simply tries to generate a string and if it fails it tries again. Therefore, the length of the
strings is small and the computation is expensive. It produces almost no string that has a
length bigger than 3. The speed difference for 100, 1000 and 10000 generated tests is shown
in Table 3.1. Filters should only be applied if the purpose is to filter out a few examples, like
the following: length 6= 0 or s 6= null.

20 Chapter 3. Testing with FsCheck

Number of tests [#] Where-filter [ms] Custom generator [ms]
100 854 127

1000 6 968 159

10000 68 511 477

Table 3.1: Computation time to test a property with upper-case string generators.

1 return Arb.From(Arb.Default.String().Generator

2 .Where(s => s != null && Regex.IsMatch(s, "ˆ[A-Z]+\$"))

3 , Arb.Default.String().Shrinker);

Listing 3.10: Extension of upper-case string generator by standard shrinker.

One problem remains with both approaches. What if a test case needs a default string and
a string that consists only of upper-case letters. Since we replaced the default arbitrary for
strings with a custom one by registering our custom arbitrary FsCheck can no longer generate
”default” strings. The solution is to define a struct in C# or a record type in F# that contains a
string and define our arbitrary for the custom type. With Arb.Register<UpperCaseString>();

we register a custom struct which we can then use in our properties. The struct is shown in
the following line:

public struct UpperCaseString { public string s; }

3.3.2 Custom Shrinking

We continue the current example to show how shrinking works for custom generators. Since
we overwrote the standard string arbitrary with a generator only, shrinking is disabled. We
try to register our custom arbitrary with the standard string shrinker as shown in Listing 3.10.

If we test the property

Func<string, bool> StringAreMaxLength2 = s => s.Length < 2;

we will receive a counterexample like ”JTA” which is then shrunk to ”aa”. FsCheck obvi-
ously treats generator and shrinker separately. Since we do not want to have shrunk values
that are out of range of our generator we have to ensure ourselves generator and shrinker map
to the same value space. An example shrinker for UpperCaseString is shown in Listing 3.11.

The first for loop removes one element of the string at each possible position and yield
returns them. Yield return returns each element, one at a time. It is not necessary to define
an IEnumerable instance. The second loop decreases the char value at each position by one
with ’A’ being the lower bound and yield returns them. Our custom shrinker works in two
dimensions where one is the length of the strings and the second one is the value of the char
elements, both using correct lower bounds to ensure the same value space as the generator.
This time for the counterexample ”JTA” we will receive the shrunk value ”AA”, which is
minimal for our upper-case string type.

3.4 Model-Based Testing

This section describes FsCheck’s model-based testing functionality. Currently, two approaches
for Model-based testing (MBT) are available in FsCheck. The first one can be seen as the
regular version, which was implemented first. The second one is still in an experimental

Chapter 3. Testing with FsCheck 21

1 public static IEnumerable<UpperCaseString> Shrinker(UpperCaseString ucs) {

2 string s = ucs.s;

3 for (int i = 0; i < s.Length; i++) {

4 yield return new UpperCaseString(s.Remove(i, 1));

5 }

6 for (int i = 1; i < s.Length; i++) {

7 if (s[i] > ’A’) {

8 var ca = s.ToCharArray();

9 ca[i] -= (char)1;

10 yield return new UpperCaseString(new string(ca));

11 }

12 }

13 }

Listing 3.11: Custom shrinker of upper-case string generator

namespace since it is not completed yet. This thesis mainly makes use of the second version
and therefore the explanation focuses on the experimental version.

3.4.1 Procedure

In order to perform MBT with FsCheck, certain components are needed. A system that will
be verified, called system under test (SUT). A model, which is an abstraction of the SUT and
describes a partial behavior of the SUT. Several operations which will be executed on the
SUT and on the model and a test framework which handles the execution of operations, or
command as it is called in some other PBT tools, and verifies pre- and post-conditions. The
test framework is already supplied by FsCheck. The user has to supply the other parts and
configure the test framework.

Figure 3.1 shows the flow-chart of one test execution of FsCheck. First, a Setup is performed
which sets the initial state of the model and the SUT. Since the initial state is generated, we
can set a randomized initial state. For example, the initial amount on a bank account can be
set to a value in the range of the bank accounts limits.

The test framework evaluates if the maximum number of operations is already reached.
The number of maximum operations can be configured before the test-case execution. If the
maximum number is not reached, FsCheck will try to generate a new operation. The specific
operations are selected in Next. The function Next has a generator and the current model as
input and returns a set of possible operations. Setup and Next are both located in an own class
called Machine.

FsCheck tries to find an operation that satisfies its precondition. If no precondition can
be satisfied after a given number of tries the test case is aborted. This check is performed
in the operation’s function Pre which receives the current model and decides if it is possible
to execute the current operation. For example, it might be impossible to withdraw money
from a bank account that is empty. If an operation is found that satisfies its precondition the
operation is run. The Run function of the operation receives the current model, modifies it
and returns a new model. The three function of Next, Pre, and Run are performed in a loop
until the maximum number of operations is reached.

After finishing the loop the previously run operation has to be checked. One by one each
operations’ Check function gets called. In Check, the SUT is exercised. The model, which was
returned from Run, is available in this function. The property (postcondition) of the operation

22 Chapter 3. Testing with FsCheck

Setup

Maximum number of
commands reached?

Check

Does property of
command hold?

All commands
checked?

Pass Fail

Pre

Precondition
satisfied?

Next

Yes

No

No

Yes

No

No

Yes

Run

Yes

Figure 3.1: Flowchart of a test case executed by FsCheck’s state machine module.

1 public class BankAccount {

2 public int Money { get; private set; }

3 public BankAccount(int initialMoney) { Money = initialMoney; }

4 public void Deposit(int inc) { Money += inc; }

5 public void Withdraw(int dec) { Money -= dec; }

6 public override string ToString()

7 { return String.Format("BankAccount: {0}", Money); }

8 }

Listing 3.12: Bank account as a system under test.

is verified here. This is usually done by comparing the state of the model with the state of
the SUT. If a property does not hold, the verdict of the test case is fail. If the properties of all
operations hold the verdict is pass.

3.4.2 Example: Bank Account

The example of a bank account will illustrate how MBT can be performed with FsCheck.
Listing 3.12 shows the SUT of this example. In a real-world example, we have to imagine
complex operations behind the logic of a bank account. However, the example shown here
attempts to be minimal. A bank account gets initialized with a money value and two methods
can be executed on it. Deposit to put money on the account and Withdraw to take away money
from the account. FsCheck will call the ToString method to log the state of the object during
a test run.

FsCheck defined an interface, Machine<SystemUnderTest,Model>, containing method signa-
tures for Setup and Next. We will abstract our BankAccount as an integer number representing

Chapter 3. Testing with FsCheck 23

1 public class BankAccountMachine : Machine<BankAccount, int> {

2 public override Arbitrary<Setup<BankAccount, int>> Setup

3 { get { return new BankAccountSetupArb(); } }

4 public override Gen<Operation<BankAccount, int>> Next(int value)

5 { return ArbsToRegister.BankAccountOperationArb().Generator; }

6 }

Listing 3.13: Bank account machine

1 public class BankAccountSetup : Setup<BankAccount, int> {

2 public int Initial { get; }

3 public BankAccountSetup(int inital) { Initial = inital; }

4 public override BankAccount Actual() { return new BankAccount(Initial); }

5 public override int Model() { return Initial; }

6 }

7 public class BankAccountSetupArb : Arbitrary<Setup<BankAccount, int>> {

8 public override Gen<Setup<BankAccount, int>> Generator {

9 get {

10 return Gen.Choose(0, 100).Select(i

11 => (Setup<BankAccount, int>)new BankAccountSetup(i));

12 }

13 }

14 public override IEnumerable<Setup<BankAccount, int>>

15 Shrinker(Setup<BankAccount, int> _arg1) {

16 var initials = Arb.Default.Int32().Shrinker(((BankAccountSetup)_arg1).Initial);

17 foreach (var i in initials) {

18 yield return new BankAccountSetup(i);

19 }

20 }

21 }

Listing 3.14: Bank account setup and arbitrary

the money on the bank account. The Machine<Bankaccount,int> is shown in Listing 3.13.
The function Setup returns an Arbitrary of the type Setup. A Setup is a class that contains

two functions. One that returns the initial state of the SUT called Actual and another one that
returns the initial state of the model called Model. The Setup, as well as the arbitrary, are
shown in Listing 3.14. Arbitraries were explained previously in Section 3.3, here we focus on
the functionality of MBT. Note that shrinking is supported through the property-based nature
of the tool.

The function Next has a generator as input to generate an operation that will be per-
formed on the SUT and the model. It is useful to put this generator into an arbitrary,
implement the Shrinker and register the arbitrary. This allows FsCheck to not only shrink
the operation sequence in a test case but also shrink the operations themselves. In our
case, a WithdrawOperation that withdraws an amount of 50 from the bank account could
be shrunk to one that withdraws only one. The generator in our example chooses between
a WithdrawOperation and a DepositOperation which can have a transaction amount between
one and ten, inclusive. This is shown in Listing 3.15.

The last parts we need are the operations. In Listing 3.16 the DepositOperation is shown.

24 Chapter 3. Testing with FsCheck

1 public override Gen<Operation<BankAccount, int>> Generator

2 {

3 get {

4 var incGen = Gen.Choose(1, 10).Select(i

5 => (Operation<BankAccount, int>)new DepositOperation(i));

6 var decGen = Gen.Choose(1, 10).Select(i

7 => (Operation<BankAccount, int>)new WithdrawOperation(i));

8 return Gen.OneOf(incGen, decGen);

9 }

10 }

Listing 3.15: Generator function of the bank account operation arbitrary.

1 public class DepositOperation : Operation<BankAccount, int> {

2 public int Amount { get; private set; }

3 public DepositOperation(int amount) { Amount = amount; }

4 public override bool Pre(int m) {

5 if (m + Amount > 100)

6 return false;

7 return true;

8 }

9 public override int Run(int m) { return m + Inc; }

10 public override Property Check(BankAccount a, int m) {

11 a.Deposit(Amount);

12 return (a.Money == m).ToProperty();

13 }

14 public override string ToString() {

15 return String.Format("Deposit:{0}", Deposit);

16 }

17 }

Listing 3.16: Implementation of the deposit operation.

We want our bank account to remain between an amount of 0 and 100. We ensure that the
bank account is not tested outside these boundaries via preconditions. The Run function
simply adds the amount that we want to deposit to our model. Check exercises the SUT and
compares the model with the value of the bank account. This represents our postcondition
and is returned as a property. The WithdrawOperation is implemented in a similar manner.

In order to execute our specification, we transform our machine into a property with the
provided FsCheck functionality.

new BankAccountMachine().ToProperty().Check(Configuration.VerboseThrowOnFailure);

By converting the machine into a property common configurations can be applied. It is
important to note that configuring the size of the generators will also influence the length of
the test cases, e.g. setting the EndSize to 10 implies that no test case will have more than 10

operations. If we now execute the above line in a test method we will get output for each test
case. Test case outputs will have the form as shown in Listing 3.17.

The first line shows the test case number. This one is the 10th test case out of 100 since the
indexing is zero-based. In the second line, we see the initial state of our model, which is 92.

The following lines contain the output of the ToString format of the operation and the

Chapter 3. Testing with FsCheck 25

1 9:

2 (92, Setup BankAccount)

3 Deposit:6 -> 98

4 Withdraw:2 -> 96

5 Withdraw:3 -> 93

6 Withdraw:1 -> 92

7 Withdraw:5 -> 87

8 Deposit:2 -> 89

9 Deposit:1 -> 90

10 Deposit:8 -> 98

11 Withdraw:10 -> 88

12 Deposit:3 -> 91

13 Withdraw:10 -> 81

Listing 3.17: Test case output of the bank account specification.

model value after execution of the operation. In this example, the first operation deposits an
amount of six. With the initial amount of 92, the bank account should hold an amount of 98

after execution of the operation. Note how defined limits are adhered to. Almost no Deposit
operations were executed in the beginning of our test case since the balance is close to the
upper limit of 100.

As a next step, we show how FsCheck deals with a faulty implementation. A simple
artificial bug is implemented in the Withdraw functionality of the SUT. Withdraw only works
if the amount on the bank account is lower than 50. This is realized by adding the following
line if (Money >= 50) return; to the function BankAccount.Withdraw.

Upon testing the faulty implementation a counterexample for the specification was found
after 10 test runs. Table 3.2 shows the original found counterexample as well as the shrunk
counterexample. The identifiers of the operations were tracked in order to show how the
sequence of operations was shrunk and which operations were shrunk.

Shrinking of operations themselves is not possible by default. This is only enabled if an
arbitrary for the operation is implemented and registered at FsCheck. The last operation of
the counterexample was shrunk to its minimum. With the test output, we are able to make an
educated guess about the error. The error occurs on a Withdraw operation if the amount of
the bank account is higher or equal to 50 and is not influenced by the amount the operation
withdraws.

Original Shrunk
Deposit:5 ! 33

Deposit:6 ! 39 Deposit:6 ! 34

Deposit:2 ! 41 Deposit:2 ! 36

Deposit:1 ! 42 Deposit:1 ! 37

Deposit:2 ! 44 Deposit:2 ! 39

Deposit:10 ! 54 Deposit:10 ! 49

Deposit:1 ! 55

Withdraw:1 ! 54 Deposit:1 ! 50

Withdraw:3 ! 51

Withdraw:3 ! 48 Withdraw:1 ! 49

Deposit:3 ! 51

Table 3.2: Original and shrunk counterexample of a faulty bank account implementation.

26 Chapter 3. Testing with FsCheck

With meaningful string representations and shrinking mechanism for operations, it is often
possible to narrow down the type of error in a meaningful way and to reduce debugging time.
This also holds true for more complex examples. However, during the thesis, it was observed
that shrinking is not always feasible in real-world examples. It is not always possible to shrink
an example even if the error could be found with a shorter sequence. In order to shorten some
sequences, multiple shrink operations would have to occur in one step.

Running long sequences on a real system is usually slower due to the communication
of web-services, database accesses, control of hardware components and other complex and
time-consuming tasks. Since shrinking tries to remove one operation per shrinking step from
the sequence this might result in long run times. Shrinking is a very useful tool to narrow
down errors but it is important to keep in mind that real-world systems may operate to slow
to make shrinking feasible and that a minimal counterexample will not always be found.

For further information on how MBT with FsCheck works and other examples refer to the
user manual of FsCheck2. The examples in the manual are written mainly in F#. While some
C# examples exist, they do not for the experimental MBT version.

It is however interesting to compare the style between the F# and C# version. The F# ver-
sion benefits from a powerful type inference system, which makes the code snippets concise.
This can be observed in generic type parameters, which have to be written explicitly in the C#
version and in the need of defining classes which contain a huge amount of boilerplate code
as seen in the Setup class.

2https://fscheck.github.io/FsCheck

https://fscheck.github.io/FsCheck

27

4 Testing with MoMuT

MoMuT (MOdel-based MUtation Testing) is based on mutation testing. Instead of programs,
abstract models of the SUT are mutated. A model can be represented as an UML state-
transition diagram or as an object-oriented action system (OOAS). Then faults are introduced
into the original model via mutation operators. The objective of MoMuT is to identify and kill
these mutated models.

This Chapter will give an overview of the architecture of MoMuT, explain OOAS and
abstract test-case generation in more detail. The approach of this thesis interacts with MoMuT
by providing the OOAS as input and interpreting the output of MoMuT in the form of abstract
test-cases.

4.1 Architecture

MoMuT::UML is a mutation testing tool which takes UML state-transition diagrams as input.
They are transformed into action systems and later interpreted as labeled transition systems
(LTS)s. The test-case generator then performs a conformance check. The tool explores the state
space of the original and mutated model and tries to detect differences in their behavior. If
non-conformance is detected, a test case is generated that shows the difference. Model-based
mutation testing (MBMT) is a computationally expensive strategy. Numerous mutants have
to be analyzed and generating test cases involves a conformance check of the two models [3].

Figure 4.1 [67] shows the architecture of the tool. The input for MoMuT::UML are UML
models. They can be modeled using tools such as Papyrus MDT1 or Visual Paradigm2. The
UML model is then converted to an object-oriented action system (OOAS). OOAS are ex-
plained in Section 4.2. The tool also mutates the UML model and converts these mutants
to OOAS as well. It is possible to use only certain components of MoMuT. For example,
OOAS models can be directly translated with the OOAS compiler without the need to define
the models in UML. However, if this method is chosen mutation operator have to be imple-
mented by the user since the UML mutator would not be applied to the models. In this thesis,
we implemented our own simple mutation operator. This is further explained in Section 6.3.

For the test-case generation, three different back-ends are available. The ”enumerative
back-end”, developed in the MOGENTES3 project, the ”symbolic back-end”, developed within
the TRUFAL4 project and the 3rd generation version developed by the Austrian Institute of

1https://eclipse.org/papyrus
2https://www.visual-paradigm.com
3http://www.mogentes.eu
4https://trufal.wordpress.com

Figure 4.1: MoMuT::UML architecture overview.

https://eclipse.org/papyrus
https://www.visual-paradigm.com
http://www.mogentes.eu
https://trufal.wordpress.com

28 Chapter 4. Testing with MoMuT

Technology (AIT)5. The latest version uses UML models as input for the front-end, converts
them to OOAS models for the back-end and uses the OOAS models for mutations and abstract
test-case generation [82]. At the beginning of the thesis, the back-end was not available stand-
alone. This would have required generating UML instead of OOAS models, which was out
of the scope of the thesis. Between the enumerative and symbolic back-end, the latter showed
better performance for the action systems in this thesis. Therefore, the symbolic back-end was
chosen for the case study. For research beyond the scope of the thesis, we would recommend
using the latest version of MoMuT as it seems to be the most promising.

All back-ends support the following three test-case generation strategies:

1. Random, which uses a random walk to traverse the original model and does not rely on
mutants.

2. Mutation, which checks if the behavior of the mutant differs from the original and gen-
erates test cases that display this difference.

3. Combined strategy, which uses both, random and mutation.

The symbolic back-end uses Microsoft’s SMT Solver Z3 [81]. It is written in SICStus Prolog
[27] and is further explained in Section 4.3. Finally, MoMuT::UML produces abstract test cases
in the Aldebaran format. The Aldebaran format is a file format for presenting LTSs [41].

In this thesis, a web-service is tested which defines its specification in business rule-
models. These models are translated directly into extended finite state-machines and further
into OOAS models and not into UML models. Therefore, the UML Mutator and the transla-
tion step from UML to OOAS of the tool are not used. Furthermore, the symbolic back-end
was chosen as a test-case generator to generate abstract test cases. In the following chapters
mainly the OOAS compiler and the symbolic back-end are explained. Therefore, MoMuT will
refer to those components from MoMuT::UML.

4.2 Object-Oriented Action Systems

Action systems (AS) were first introduced by Back and Kurki-Suonio [17] as a modeling for-
malism for distributed systems. Action systems start at an initial state. The state is changed
by executing actions on the system. One action is chosen at each step in a non-deterministic
manner. Actions can only be chosen if they are enabled. They are enabled if their guard
is satisfied in the current state. If there is no action enabled, the execution terminates. The
Object-oriented action system (OOAS) language is an object-oriented extension which is based
on the work of Bonsangue et al. [25].

4.2.1 Action System

There exist various different versions of the original AS notation by Back and Kurki-Suonio
[17]. According to Jöbstl [61] the following notation to present an action system AS is common.

A = |[varvarvar v, w⇤ • S0, dododo A1[]...[]An ododod]| : I

An AS consists of the variable block var, an initialization action S0 and the do� od block. In
the variable block, the set of variables v denotes internal variables of the AS. Variables marked
with an asterisk w⇤ are exported by the action system and become global variables. Other AS
can import them via the import list I. The central part of the action system is the do-od block.
Repeatedly one of the contained actions A1, ..., An is chosen non-deterministically. An action

5https://www.ait.ac.at

https://www.ait.ac.at

Chapter 4. Testing with MoMuT 29

Ai consists of a label definition, a parameter list, a guard and a body. The guard is a boolean
expression which indicates if it is valid to execute the action in the current state. If the guard
evaluates to true, the action is enabled. The body of an action is composed of statements that
change the state of the variables in the AS. In addition to this common definition, actions will
be marked to identify the type of action. The label definition may start with a question or
an exclamation mark. A question mark denotes the action as input, an exclamation mark as
output and the absence of both denotes it as an internal action [61, 99].

4.2.2 Object Orientation and Complex Data Types

An object-oriented action system consists of a finite set of classes, each class specifying the
behavior of objects. They are dynamically created and executed in parallel [25]. OOAS also
implements a prioritized composition operator, which has been introduced by Sekerinski and
Sere [97], as in addition to the sequential and non-deterministic composition. Since these
features are not required for the modeling process in this thesis they are not further explained.
Complex data types, such as maps, lists, and tuples are also added to the OOAS language.

Listing 4.2 shows a part of the syntax of an OOAS. Certain parts of the language are not
implemented in this thesis and therefore not further explained. For a more detailed syntax
definition and explanation of the OOAS language, the interested reader may refer to Tiran
[104].

In this thesis, an OOAS consists of a set of user-defined types and only one object of
an AS class. In general, OOAS supports multiple instances of a class, however, since only
one instance is needed in this work the original OOAS syntax is simplified to only reflect
components relevant to this thesis. The AS has a set of variables that are initialized. Following
is a set of actions that can be marked as input with ctr, as output with obs or internal actions if
it is not marked. Each action consists of a guard and an assignment block. Finally, the do-od
block contains the calls to the named actions.

There are several types of variables that are supported in the OOAS language in the type
initialization block. Integer types must have a lower and upper bound. Types can also be
defined by enumerating possible values and assigning them to integer types. The standard
boolean type is also supported. Complex enumerable types are also supported as mentioned
previously.

Listing 4.1 shows a bank account OOAS. A bank account model was as well introduced for
FsCheck in the previous chapter 3. The example shown here contains, as before, the Deposit
and Withdraw actions. They are marked as input actions. In addition, it also contains a Notify
action which is marked as output. Noti f y should inform the user that his account is almost
depleted.

The order of type and variable definition is placed in different locations and the initializa-
tion is done in the variable definition block of a class. When a class is marked as autocons,
one instance of the class will be created automatically. This object is called the root object. In
our case, the AS consists only of one class and one object, the bank account.

The named actions of the class can be seen in the Lines 8 to 16. They can only be called
from within the do-od block in Line 17 to 21 and may not be recursively nested. Each of the
named actions has the form of a guarded command. This is seen in Lines 9, 12 and 15. The
composition contained in the do-od block is non-deterministic and expressed with the following
notation: S1[]S2. This means that any action can be chosen at each step as long as its guard is
enabled.

30 Chapter 4. Testing with MoMuT

OOAS :=0types0 TypeList 0system0 Identi f ier
TypeList :=(Identi f ier 0 =0 ComplexType 0;0)⇤

Identi f ier 0 =0 OOActionSystem
OOActionSystem :=0autocons0 0system0 Identi f ier 0|[0

0var0 AttrList? 0actions0 NamedActionList
0do0 ActionCallBlock 0od0 0|]0

AttrList :=(Attr 0;0) ⇤ Attr
Attr :=Identi f ier 0 :0 ComplexType 0 =0 Exp

ComplexType :=SimpleType | EnumerableType
Exp :=Atom BinOperator Atom

NamedActionList :=(NamedAction 0;0) ⇤ NamedAction
NamedAction :=(0obs0|0ctr0)?Identi f ier

0(0 MethodParamList 0)0 DiscreteActionBody
DiscreteActionBody :=0requires0 Exp 0 :0 ActionBody 0end0

ActionBody :=ActionBodyParallel|ActionBodySeq|Statement
ActionBodyParallel :=ActionBlockParen0[]0 ActionBlockParen

ActionBodySeq :=ActionBlockParen0;0 ActionBlockParen
ActionBlockParen :=ActionBlock|DiscreteActionBody

Statement :=(0skip0) | (Re f erence 0 :=0 Exp)
ActionCallBlock :=(Action 0[]0) ⇤ Action

Action :=0var0 Identi f ier 0 :0 ComplexType
0 :0 Identi f ier 0(0 MethodCallParam 0)0

MethodCallParam :=(Exp 0,0) ⇤ Exp

Figure 4.2: Definition of an object-oriented action system syntax used in this thesis.

4.3 Abstract Test-Case Generation

Abstract test-case generation is performed by MoMuT’s symbolic back-end. The heart of the
test-case generation process is conformance checking. It is checked if the mutated model
conforms to the specification, i.e. the original model. If a state can be reached that does not
conform to the specification the path to the failing state is saved and a test case is obtained
[61].

4.3.1 Input-Output Conformance of Labeled Transition Systems

In order to perform the conformance check, the OOAS models are mapped to LTSs. Having
an LTS interpretation of the models, it is possible to exploit established testing theories [2]. As
noted previously actions are distinguished between controllable (input), observable (output)
and internal actions (t). Based on this LTS semantics an input-output conformance (ioco)
check can be performed.

The ioco relation was first introduced by Tretmans [105]. The following notions are mainly
based on this paper. An LTS is a 4-tuple (S, L, T, s0) where

Chapter 4. Testing with MoMuT 31

1 types

2 PositiveInt = {0..100};

3 BankAccount = autocons system

4 |[

5 var

6 balance : PositiveInt = 50;

7 actions

8 ctr Deposit(inc : PositiveInt)

9 requires balance + inc <= 100:

10 balance := balance + inc;

11 ctr Withdraw(dec : PositiveInt)

12 requires balance - dec >= 0:

13 balance := balance - dec;

14 obs Notify(val : PositiveInt)

15 requires balance < 10 && value == balance:

16 skip;

17 do

18 var A : PositiveInt : Deposit(A) []

19 var B : PositiveInt : Withdraw(B) []

20 var C : PositiveInt : Notify(C)

21 od

22]|

23 system

24 BankAccount

Listing 4.1: Bank account as an object-oriented action system

• S is a countable, non-empty set of states,
• L is a countable set of labels,
• T ✓ S ⇥ (L [{t})⇥ S is the transition relation,
• s0 2 S is the initial state.

The labels L are the observable actions of a system and t is a non-observable internal
action. A transition (s, µ, s0) 2 T starts from the state s, has a label µ and ends in the state s0.
It is denoted as s

µ�! s0.
A trace s is the sequence of observable actions of a computation, where a computation is

a composition of transitions. The traces of a state traces(sn) denote all traces s 2 L [# starting
from sn, where # is the empty sequence. It is common to refer to all traces of an LTS p starting
from the initial state s0 as traces(p) instead of traces(s0). We further define p after s as the
set of possible states after the trace s from the start state p.

We can partition the labels L of an LTS into input LI and output LU actions where (L =
LI [LU) ^ (LI \ LU = ∆). We denote this new class of input-output transition systems as
IOTS(LI , LU) ✓ LTS(LI [LU). Before explaining the ioco-relation a few other notions need
to be introduced.

• If in every state, every input is enabled, then the automaton is said to be input-enabled,
or strongly input-enabled. This means that the automaton is unable to block its input,
which is an important assumption for the models [75].

• The notion from Tretmans ioco-relation also allows input enabling via internal transi-
tions t, which is called weakly input-enabled [105].

32 Chapter 4. Testing with MoMuT

S

s1

s0

?w

s2

?d?d

?w!n

?w

?d

M

m1

?x

δ

m0

?w

m2

?d?d

?w!n

?w

?d δ

N

n1 δ

n0

?w

n2

?d

?d

?w!n

?w

?w

?d δ

Figure 4.3: Examples for LTSs from mutated bank account models.

• If a state generates no output during a certain period of time, it is considered a quiescent-
state and it contains a transition to itself labeled with d [21].

• If an LTS eventually enters a quiescent state, it is called strongly responsive. This means
that the system does not have any infinite paths consisting of only internal actions t [21].

Let the mutated model MM = (SMM, LMM,!MM, sMM
0) be a weakly input-enabled IOTS

and let the specification S = (Ss, LS,!S, sS
0) be a strongly responsive LTS. Then, ioco can be

defined as follows:

MM ioco S =d f 8s 2 traces(S) : OutMM(MM a f ter sMM) ✓ OutS(S a f ter sS)

After denotes the set of reachable states after a certain trace s. Out denotes the set of
all output events in a set of states S [5]. The mutated model is input-output conform to the
specification iff the outputs of the mutated model are possible in the specification after the
trace of the specification for each trace in the specification.

Example: The ioco check is shown on a simplified version of the bank account. As opposed
to before the bank account is initialized with a balance of one. The lower and upper limits
are changed to zero and two respectively. The notify action will now only notify the user if
the account is completely depleted, in other words, if the balance is zero. These changes are
performed in order to illustrate the conformance check in a concise manner.

Figure 4.3 shows the original model of the bank account S and two mutated versions M
and N. The number in the state label represents the amount that is on the bank account.
s0, m0, n0 are the states in which the bank account is depleted. The initial states of the LTS
are s1, m1, n1. The transitions ?d and ?w stand for the deposit and withdraw actions. They are
input actions. The only output action possible is !n, which stands for notify.

All input actions are possible in every state. The states that did not have all input actions
were modified. For example, ?d was added to the state m1 as a self-loop. In order to make
the implementations input-enabled, these transitions were added to the mutants M and N. In
addition, quiescence edges d were added to the mutants. They are marked in blue color. A
quiescent state is a state that has no edge labeled with an output or an internal action.

Chapter 4. Testing with MoMuT 33

The first mutant added the input action ?x marked in red. The action ?x does not exist in
the specification at all. The states m0 and m2 need self-loops with the new action to remain
input-enabled. This is however omitted in the graph to keep the example readable. The action
?x results in an arbitrary additional state since it is not relevant for the example. From the ioco
definition, only traces that exist in the specification are checked. Since the only difference is
the added action ?x, M ioco S. The mutant cannot be detected or in other words is not viewed
as an error.

The second mutant added the withdraw action to the depleted state resulting in a full
bank account. Again, the mutated transition is marked in red. This time N���ioco S. We can see
the violation if we analyze the trace ?w?w.

out(n1 a f ter ?w?w) = {!n, q}
out(s1 a f ter ?w?w) = {!n}

Since {!n, q} 6⇢ {!n} the mutant was detected and is viewed as an error. The trace ?w?w
can be further processed to generate an abstract test case.

4.3.2 Refinement Checking

In addition to the previously described ioco check a refinement check is performed. The
refinement check for AS is strict but efficient. The refinement check is performed before the
ioco check. Only if non-refinement is reached an ioco check is performed. The ioco check
starts from the unsafe state and is then applied to observe if the mutation propagates to an
unspecified output action. This way the expensive process of ioco checking is limited to a
partial model, allowing higher exploration depths and hence longer test cases [61].

The following definitions are mainly based on Aichernig and Jöbstl [4].
Refinement checking is performed to find an unsafe state. A pre-state v is called unsafe if

it shows not conforming behavior in a mutated model MM with respect to an original model
MO. We refer to this unsafe state as u for unsafe, which is formally described as follows:

u 2 {s|9s0 : MM(s, s0) ^ ¬MO(s, s0)}

The inputs for the refinement check are the original system and the mutated model.
As stated before, the systems consist of a set of actions. They are combined with a non-
deterministic choice operator. In the AS event traces and system states before (v, tr) and after
one execution step (v0, tr0) are observed. v refers to the pre-state of variables and v0 refers
to post-state of variables. The mutated version ASM refines to its original version ASO iff all
observations possible in the mutated version are possible in the original. Refinement is based
on event traces and states. Furthermore, reachability is taken into account since not all states
are reachable from the initial state [6]. Refinement of action systems is defined as follows:

ASO v ASM =d f 8v, v0, tr, tr0 : (v 2 reach(ASO, tr) ^ PM)) PO

PO and PM refer to the do-od blocks of their respective action systems ASM and ASO.
We negate the refinement definition and consider that actions Ai are selected in a non-
deterministic choice. This allows us to obtain a set of constraints for detecting non-refinement.
Non-refinement for ASs is defined as follows:

ASO 6v ASMiff
n_

i=1
8v, v0, tr, tr0 : (v 2 reach(ASO, tr) ^ AM

i ^ ¬AO
1 ^ ... ^ ¬AO

m)

34 Chapter 4. Testing with MoMuT

These non-refinement constraints are given to a constraint solver to check whether it can
be satisfied by some v, v0 for Ai with its parameter. It is sufficient to satisfy only one of the
constraints in order to find non-conformance. Therefore, the actions are checked one-by-one
until a non-refinement constraint is satisfied, which means an unsafe state was found. If the
unsafe state is also actually reachable we can then proceed with the previously discussed ioco
check. If no unsafe state was found we know that the ASs are equivalent and no further ioco
check is needed.

As stated before the back-end is written in SICStus Prolog which has an integrated con-
straint solver clpfd (Constraint Logic Programming over Finite Domains) [28]. This was the
initial constraint solver for MoMuT. The newer version of MoMuT in this thesis uses the
Microsoft’s Z3 constraint solver instead.

35

5 Using Rule-Engine Models in Model-Based
Testing

In order to perform model-based testing (MBT) a rule-engine model (REM) is translated into
an extended finite-state machine (EFSM). EFSMs were chosen as a representation since they
are well-studied [46] and are easy to translate into EFSMs. The translation process is shown
in Section 5.1. In Section 5.2 a property-based testing approach is shown that utilizes said
EFSMs for MBT. Figure 5.1 shows a flow chart of the proposed approach. In this chapter,
the processes and data nodes in the upper-most row are described. How to integrate and
implement the external test case generator is shown in Chapter 6. The content of this chapter
is based on Aichernig and Schumi [9]. This is explained in more detail in the introduction of
this thesis in Section 1.3.

5.1 Translating Business Rule Models into EFSMs

This section introduces the syntax of the REMs as well as the definition of EFSMs that is used
in this thesis. Finally, the transformation process from REM to EFSM is explained. The term
REM is used as a synonym for business rule model introduced in Chapter 2. In the context of
the case study, REMs describe the functional model of the system. The model focuses on rules
that constrain the business domain. Therefore, the preferred term will be REM, to emphasize
on the models of our case study.

5.1.1 Rule-Engine Models

The web-service application of the case study has a custom rule management system. At the
time the tool was developed many approaches to embed rules into a system that exist today
were not developed or established yet. The implementation is similar to other standardized
rule definitions. Rule management systems and their respective tools are explained in more
detail in Section 2.3. The approach presented in this section can be adjusted and transferred
to other rule management systems.

The approach focuses on REM. A REM describes the behavior of an object in its respective
domain. The object has an identifier, a state, and attributes. The REMs have a specific custom
syntax in order to comply to the SUT in the case study. They are contained in XML files. The
syntax of a REM can be defined as in Figure 5.2.

It is well-known in the studies of compiler construction, that proper definition of syntax is
fundamental to automated processing of the code. Unfortunately, this is still often neglected

TransformationRule Engine
Models

Extended
Finite State
Machines

Property-based
Testing Tool Model-based Tests

PBT Tool
Integration

External Test Case
Generator

Abstract
Test Cases

Figure 5.1: Flowchart of the proposed testing approach showing how REM can be testing
using a PBT tool.

36 Chapter 5. Using Rule-Engine Models in Model-Based Testing

REM =d f rem(AllAttributes, AllTasks, AllStates)
AllAttributes =d f Attribute⇤

Attribute =d f attr(id : Name, type : DataType, params : Parameter⇤)
DataType =d f Integer|Float|Bool|String|Enum|Object|Date|DateTime|

TimeSpan|File|Reference|...
Parameter =d f MinValue|MaxValue|EnumItem ⇤ |Query|Regex|...

AllTasks =d f Task⇤
Task =d f task(id : Name, possibleNextStates : Name⇤,

attributes : DynamicAttributeInfo⇤)
DynamicAttributeInfo =d f (attribute : Name, enabled : bool, required : bool)

AllStates =d f State⇤
State =d f state(id : Name, possibleTasks : Name⇤)

Figure 5.2: Definition of the custom REM syntax based on Aichernig and Schumi [9].

in today’s economy. In the study, the syntax limits the scope of what a REM is allowed to
contain and therefore what the test framework is supporting. Behavior deviating from the
defined syntax is not supported. New features for REMs have to be carefully implemented
in order to comply with the abstract syntax or to only cause minimal changes. The abstract
syntax was defined in order to create a XML-schema following the guidelines of Thompson
et al. [102].

There exist various tools to transform XML files into source code using schemas. Since the
case study was performed in C#, Microsoft’s XML schema definition tool1 (xsd.exe) was used
to create the source code. Note that this step can be performed in most other object-oriented
programming languages with their respective tools.

A REM consist of a set of attributes, a set of tasks and a set of states. An attribute represents
data that has to be sent to the SUT in order to perform a task. An attribute comprises a name,
a data type and optionally a set of parameters. The data type describes which type of data
is saved in the attribute. This can range from a simple type such as integer to more complex
data types such as object types which are a composition of other attributes. Parameters can be
supplied to further restrict the data type. For numeric values, this may be the minimum and
maximum value of the integer, for strings this may be the minimum and maximum length
of the string. More complex restrictions can occur in the form of regular expressions which
are typically implemented for validating user input. Attributes may also be restricted via
queries. This allows the implementation of a dynamic drop-down menu in a web-form where
the query results are presented to a user, e.g. for the selection of the responsible person for a
certain issue.

Tasks represent the actions or events a user may trigger. They are the transition relation
and can be represented by multiple transitions in a state machine. A task consists of a name,
a set of possible next states and a set of dynamic attribute information. As the name suggests,
the set of possible next states describes the states the object may transition into. If more than
one state is possible, the user may choose which state the object should be transitioned into.

1https://msdn.microsoft.com/en-us/library/x6c1kb0s.aspx

https://msdn.microsoft.com/en-us/library/x6c1kb0s.aspx

Chapter 5. Using Rule-Engine Models in Model-Based Testing 37

1 <RuleEngineModel TfmsType="Incident">

2 <AllAttributes>

3 <StaticAttributeInfo Name="Name" DataType="String" MinValue="1" MaxValue="64"/>

4 <StaticAttributeInfo Name="Severity" DataType="Enum">

5 <EnumItems>

6 <EnumItem Name="low" MlgKey="Incident.Severity.low" /> ...

7 </EnumItems>

8 </StaticAttributeInfo>

9 ...

10 </AllAttributes>

11 <AllTasks>

12 <Task Name="IncidentCreateTask">

13 <DynamicAttributesInfo>

14 <Attribute Name="Name" Enabled="true" Required="true" />

15 <Attribute Name="Severity" Enabled="true" /> ...

16 </DynamicAttributesInfo>

17 <PossibleNextStates>

18 <State Name="Submitted" NoteRequired="false" />

19 </PossibleNextStates> ...

20 <RequiredUserRoles>...</RequiredUserRoles>

21 </Task>

22 </AllTasks>

23 <AllStates>

24 <State Name="Submitted" MlgKey="Incident.State.Submitted">

25 <PossibleTasks>

26 <Task>IncidentEditTask</Task> ...

27 </PossibleTasks>

28 </State> ...

29 </AllStates> ...

30 </RuleEngineModel>

Listing 5.1: Simplified XML representation of a rule-engine model based on Aichernig
and Schumi [9].

While the user makes this choice deliberately on the system from a testing perspective we
do not know which choice the user will make and assume that every choice is as likely. The
set of dynamic attribute information contains the attributes associated with the task. Some
attributes are required in order to perform the task and others are optional and hold additional
information. Furthermore, an attribute may be disabled, which means the user is not allowed
to edit the given attribute in the current task.

Listing 5.1 shows a simplified version of the incident manager’s (ICM) REM encoded in
XML. The ICM is the simplest module consisting of only one REM and is therefore shown
throughout this chapter as an example.

The relevant sections for our approach are:

• attribute definitions with data types and parameters (Line 2 - 10)
• transitions with the dynamic attribute information, possible next states and required

user privileges (Line 12 - 22)
• states with their possible tasks (Line 23 - 29)

In addition to the main components, models can also have scripts which are executed on

38 Chapter 5. Using Rule-Engine Models in Model-Based Testing

certain events, queries for the selection of objects, and reports for an overview of the entered
objects.

5.1.2 Extended Finite-State Machines

In the following, syntax definitions and translation functions will contain operators which
bear special meaning. Some of the notations presented here are based on Bjørner and Jones
[23].

{a, b, c}. Set enumeration: the set of elements a, b, and c.
(a, b, c). Tuple enumeration: the tuple of elements a, b, and c.
[a, b, c]. Sequence enumeration: the sequence of elements a, b, and c.
s1ˆs2. The sequence formed by concatenating sequences s1 and s2.

Furthermore, lower-case variables will usually describe single elements while upper-case
variables will describe a collection of elements.

EFSMs have found use in the software testing community [108, 29]. Since REMs are easy
to translate into EFSMs and EFSMs are also useful in model-based testing they were chosen
as an intermediate model in this study. An EFSM is a very general concept and it is easy to
infer model-based tests from it.

EFSMs have been differently introduced in the literature. Cheng and Krishnakumar [32]
introduced them as a 7-tuple and Li and Wong [72] as a 5-tuple. The definition in this thesis
is based on Ramalingom et al. [89].

An EFSM is defined as a 6-tuple M = (S, s0, I, O, T, V), where

S is a nonempty set of states,
s0 is the initial state of the EFSM,
I is a nonempty set of input interactions,
O is a nonempty set of formal output interactions,
T is a nonempty set of transitions,
V is a set of variables.

Furthermore, a Transition is defined as a 5-tuple t 2 T = (s, d, i, p, cb), where

s 2 S is the source state,
d 2 S is the destination state,
i is an input interaction from I or empty,
p is a predicate or a guard,
cb is a compute block which consists of assignment statements or output interactions
o 2 O.

An EFSM model is a generalization of the traditional state machine model. In contrast
to the state machine model where the model represents the entire state explicitly, the EFSM
represents a set of states and a bounded range for each data register. In addition to the
regular state machine behavior, the EFSM has enabling functions (guards) that are associated
with each transition and arithmetic functions that perform data operations in the form of
output signals [33].

Figure 5.3 shows our reoccurring bank account as an EFSM. We added the log-in mecha-
nism to have more states and removed the deposit action to reduce the number of transition
and keep the example concise. The flat circles represent the states S and Start is our initial
state. The text above a transition contains the input interactions i and the predicate p. Output
interactions o and assignment statements can be found below the line.

Chapter 5. Using Rule-Engine Models in Model-Based Testing 39

Start

End

Log-In
Screen MenuT1

TakeCard(p,b)

ShowScreen()

T3

T2
CheckPin(p) / p = pin

LogIn()

T4
Withdraw(w) / b - w > 0

b : b – w
GiveMoney(b)

Withdraw(w) / b - w <= 0

ShowError(limited reached)
T5

T6

Figure 5.3: Representing a bank account log-in as an EFSM.

5.1.3 Translation Function

In the previous sections the syntax definition of the REM was introduced and the EFSM
definition for this thesis was shown. In order to translate between those two structures, a
transformation function has to be executed. The transformation process is shown in Figure 5.4.

Some of the sets in the EFSM definition can be translated straightforward from the REM
syntax. For example, the set of states S is generated by using the name of each state in
AllStates. The set of input interactions I, the set of formal output interactions O and the
set of variables V is translated in a similar manner by using their respective sets AllTasks,
AllStates and AllAttributes. Since the name of the elements is unique in each set, it is enough
to identify each object safely. The initial state S0 cannot be translated from the REM since
there is no definition for it. Therefore, the constant string ”Global” was chosen.

The last set, the set of transitions T, needs to be derived from the REM syntax since there
is no straightforward translation function. T consists of 5-tuples t of the form (s, d, i, p, cb).
The state s is taken of an element of the set of states S. In a state certain tasks are possible
(possibleTasks). From these tasks, a next state is selected. The name of this state is the destina-
tion state d. The input interaction i is a combination of the task name and the destination. The
operator ˆ symbolizes this string concatenation. By combining these two strings (task.Nameˆd)
it is ensured that a transition is unique and identifiable and thus prevents non-determinism.
The predicate p is always enabled. This simplification can be realized because the only tasks
considered are the ones that are possible in the current state.

The last part of the 5-tuple is the compute block cb. The output of the model contains the
destination state and also assigns the attributes of the task. This is done by using the type
and the parameters of the attribute. They are passed to a generator which then produces an
arbitrary value satisfying the type and parameter constraints. The generation of attributes is
explained in the next section. It is solely shown in the translation step already since the two
procedures are not entirely separable and preparation steps are therefore performed.

The result of the translation process can be seen in Figure 5.5. The class diagram consists
of classes that together build the model. The ModelEFSM is the model that is translated from
a REM. In the case study, each module of the system consists of multiple REMs. Therefore,
they are collected in the ModelModule. This is explained in more detail in Section 5.2.2. The
ModelEFSM class itself holds the initial state s0 and the states S in a Hashset. The set of
transitions T is represented by a dictionary mapping from the transition names to transition
objects. Also, attributes are separated from the model and accessed in the same manner.

40 Chapter 5. Using Rule-Engine Models in Model-Based Testing

buildREM : REM(AllAttributes, AllTasks, AllStates) ! EFSM(S, s0, I, O, T, V), where
S = {s.Name | s 2 AllStates},
s0 = ”Global”,
I = {t.Name | t 2 AllTasks},

O = {s.Name | s 2 AllStates},
T = buildT(AllAttributes, AllTasks, AllStates),
V = {a.Name | a 2 AllAttributes}.

buildT : AllAttributes ⇥ AllTasks ⇥ AllStates ! T, where
T = {(s, d, i, p, cb)|

s = state.Name ^ state 2 AllStates ^
d = dest.Name ^ task 2 state.possibleTasks ^ dest 2 task.nextStates ^
i = task.Nameˆd ^
p = true ^

cb = (a1 = g1.value, ..., an = gn.value, output = d) ^
ai 2 task.attributes ^ gi = generator(ai.type, ai.params)}.

Figure 5.4: Translation function of a REM to a 6-tuple EFSM based on Aichernig and
Schumi [8].

While transitions can be dynamically generated for the individual transitions, a class for each
attribute type with their respective generators had to be created.

5.2 Using EFSMs for Property-Based Testing

In order to implement EFSMs for PBT, a tool has to support certain functionality. In this
section, a way of using EFSM in PBT and how to classify the PBT tool’s functionality into
components is explained. This is by no means functionality a PBT tool has to have. It can
be seen as functionality supported by a PBT tool which enables the implementation of the
approach presented in this thesis.

Test cases have to be constructed as a sequence of operations. It has to be ensured that each
test case finishes in a clean state, side-effects of one test case should not affect the outcome
of other test cases. The representation of test cases should be easy to process. For example,
QuickCheck has a symbolic test case representation which makes it easy to store the test cases,
collect statistics and most importantly allow to write shrink functions [52]. It has to be possible
to apply generators to generate different types of operations. An operation ideally supports
four components named

1. Precondition, which verifies if the operation is appropriate in the current state,
2. Run Model, which executes the operation on the specification of the system,
3. Run SUT, which exercises the system,
4. Postcondition, which checks that the result of each operation satisfies the property.

These four components are needed in order to perform the approach shown in this thesis.
However, some of the PBT tools may logically structure the functionality differently. For the

Chapter 5. Using Rule-Engine Models in Model-Based Testing 41

AttachmentAttri…

Attribute
Class

Attribute
Abstract Class

Properties
FullName
IsRequired
Name
Type

Methods
Clone

Generator (+ 1 overload)
Nested Types

BooleanAttribute

Attribute
Class

DateAttribute

Attribute
Class

DateTimeAttrib…

Attribute
Class

DoubleAttribute

IntegerAttribute
Class

EnumAttribute

Attribute
Class

FloatAttribute

IntegerAttribute
Class

IdAttribute

Attribute
Class

IntegerAttribute

Attribute
Class

KeywordStringA…

Attribute
Class

LongAttribute

IntegerAttribute
Class

ObjectAttribute

Attribute
Class

ReferenceAttrib…

Attribute
Class

StringAttribute

Attribute
Class

TimeSpanAttrib…

Attribute
Class

ModelModule
Class

Properties
ActiveRuleEngineModel
State

Methods
DoSelectREMTransition
ModelModule (+ 1 overload)
Reset
ToString

ModelEFSM
Class

Fields
InitState
Name
States
SubType
TfmsType

Properties
CurrentObjectIndex
IdentifierName
ObjectIds
ObjectStates
State

Methods
GetPossibleTransitionNames
GetPossibleTransitionsWithWeight
MakeSelect
MakeTransition
ModelEFSM (+ 1 overload)
Reset
ToDotString
ToString

Transition
Class

Properties
BeginTaskAction
CanStayInState
From
IsDeletingObject
Name
RequiredAttributes
To
Weight

Methods
AddAttribute
CanCreate
getPossibleNextStates
GetWeightAndValue
hasMutltipleNextStates
isPossibleInState
toDotString
ToString
Transition (+ 1 overload)

ICloneable

Attributes

Transitions

RuleEngineModels

Figure 5.5: Class diagram of the translated model.

case study FsCheck’s experimental version was used. There, an operation has three functions.
Which are Pre, Run, and Check. Pre is equal to Precondition. Run is namely RunModel. Check
exercises the SUT and returns a result encoded as a property. Namely, this is RunSUT and
Postcondition in one functional block. In the stable version of FsCheck, the functionality is
encoded in four functions and the operations are called commands. Many other PBT tools
also support the needed behavior but similar as in the experimental version, the functionality
is structured logically differently.

Before defining a property we need to introduce definitions for the Model, the SUT and
the operations themselves. The following definitions are based on Aichernig and Schumi [8].
As the definitions were introduced for the commands of the stable version they were adapted
in this thesis to fit the operations of the experimental FsCheck version.

A Model is defined as a 3-tuple model =d f (s, T, doStep : i ! Model), where

s is the current state of the model,
T is a nonempty set of transitions from the EFSM definition,
doStep is a function that executes a transition t 2 T based on the input i and returns a
new Model instance model0.

A SUT is defined in the same manner as the model. A SUT is a 3-tuple sut =d f (s, T, doStep :
i ! SUT), where

s is the current state of the SUT,
T is a nonempty set of transitions from the EFSM definition,
doStep is a function that executes a transition t 2 T based on the input and returns a
new SUT instance sut0.

42 Chapter 5. Using Rule-Engine Models in Model-Based Testing

operation =d f op(i : Input, Pre : Model ! bool, Run : Model ! Model,
Check : Model ⇥ SUT ! bool) where,

op.Pre(model) =d f

(
True, if t 2 T : t.s = model.s
False, otherwise

op.Run(model) =d f model.doStep(op.i)

op.Check(model, sut) =d f

(
True, if sut0 = sut.doStep(op.i) ^ model.s = sut0.s
False, otherwise

Figure 5.6: Formal definition of an operation.

property =d f8op 2 OP :

op.Pre =) model0 = model.doStep(i) ^ op.Check(model0, sut)

Figure 5.7: Formal definition of a property for an EFSM.

Note that the function doStep returns a new instance of an SUT. In real use cases, we often
do not need to return a new instance of the SUT as the doStep function will update the state
s of the SUT. In comparison to that, we never update the state of the model when we perform
doStep, but rather return a new instance of a model with a new state. Or in other words,
the SUT might be mutable while the model must be immutable. The model is required to be
immutable by FsCheck as the framework saves the model instances after each operation and
uses them later when verifying the operations.

A definition for an operation is shown in Listing 5.6. An operation has an Input which
is used to create the specific type of operation. Additionally it has the previously explained
functions Pre, Run, and Check.

5.2.1 Property of an EFSM

The property of an EFSM can be encoded as follows. For each permitted path on the model,
the postcondition of each transition must hold. In our case study, we chose to compare the
current state of the SUT with the model as a postcondition. However, this can be extended
to not only compare the state between model and SUT but also compare if values assigned to
the attributes are correct.

The definition of a property is based on Aichernig and Schumi [8] and shown in Figure 5.7.
The precondition of the operation checks the state and input of the corresponding transi-

tions to verify if the operation is valid in the given context. In our case-study the generators
only create valid transitions to save generation time. One could assume that the precondition
can therefore always be set to true. However, shrinking only works if preconditions are sup-
plied. Shrinking deletes operations from a test case, which means that operations following
the deleted operation may be executed from a different state they were generated in. This can
result in operations being executed in an invalid state. Therefore, it might be useful to still
specify the guard of the transition to check the current state to avoid wrongful shrinking. Both
RunSUT and RunModel perform a computation on their respective parts based on the input
and state and they produce output interactions. These output interactions are compared in

Chapter 5. Using Rule-Engine Models in Model-Based Testing 43

1 public override Gen<object> Generator(int? minValue, int? maxValue)

2 {

3 if (minValue.HasValue) {

4 if (maxValue.HasValue) {

5 return Gen.Choose(minValue.Value, maxValue.Value).Select(l => (object)l);

6 }

7 else {

8 return Gen.Choose(minValue.Value, int.MaxValue).Select(l => (object)l);

9 }

10 }

11 if (maxValue.HasValue) {

12 return Gen.Choose(int.MinValue, maxValue.Value).Select(l => (object)l);

13 }

14 return Arb.Default.Int32().Generator.Select(l => (object)l);

15 }

Listing 5.2: Integer generator derived from REM.

the postcondition of the operations. In our case, the current state of the model is compared
with the current state of the SUT. If they are the same, the property of the operations holds, if
not the property of the operation, and furthermore of the whole EFSM does not hold. If the
property holds for all operations of the test case, the property of the EFSM holds.

5.2.2 Integrating EFSM into FsCheck

In this section, the integration of our previously defined EFSM into FsCheck is shown. FsCheck
is merely one of many PBT tools. It should be possible to apply the presented approach into
other PBT tools and thereby other programming languages. However, it is important to show
the approach with a tangible example and not solely abstract.

At the core of a PBT testing tool, we operate with generators. Therefore, one of the first
steps is to define them. Each attribute has to be provided with a value when performing
a task on the SUT. These attributes have their type embedded in the REM. This type and
other restrictive parameters define the generators. A simple integer generator is shown in
Listing 5.2. Whenever an attribute of the type integer is used in a task, its value will be
generated by this generator.

At the core of this generator, we use the function Gen.choose to choose an integer value
between a lower and upper bound. This is common for all types of generators. An integer
attribute may have restrictions for maximum and minimum values. These restrictions are rep-
resented through the conditionals and the lower and upper bounds of the Gen.choose function.
To be used dynamically all our generators are of the type object. We have to specifically cast
the generator value from integer to object before returning.

Other attributes cannot be generated in a straightforward manner as shown above. String
attributes that are restricted by regular expressions have to be generated with a different ap-
proach since the computation time would be too expensive. This was explained in more detail
in Section 3.3.1. A more dynamic approach is possible with the help of Fare2, a .NET port for
Google’s java library Xeger3. The tool uses a finite-state automata implementation in order
to generate text that matches a certain regular expression. This external string generation

2https://github.com/moodmosaic/Fare
3https://code.google.com/archive/p/xeger/

https://github.com/moodmosaic/Fare
https://code.google.com/archive/p/xeger/

44 Chapter 5. Using Rule-Engine Models in Model-Based Testing

Submitted

IncidentCreateTask

IncidentEditTask

IncidentEditWithVersionTask

Closed

IncidentCloseTask

Figure 5.8: Possible transitions for an incident object.

1 public static Gen<Operation<IModule, ModelEFSM>> Next(ModelEFSM m) {

2 IEnumerable<WeightAndValue<Gen<Transition>>> wvs;

3 wvs = m.ActiveRuleEngineModel.GetPossibleTransitionsWithWeight();

4

5 return Gen.Frequency(wvs).SelectMany(t => {

6 IEnumerable<string> states = t.PossibleNextStates(m.ActiveRuleEngineModel.State);

7 return Gen.Elements(states).SelectMany(nextState =>

8 GenerateData(t.RequiredAttributes.Values)

9 .Select(attributeData => (Operation<IModule, ModelEFSM>)

10 new DynamicOperation(t.Name, attributeData, nextState)));

11 });

12 }

Listing 5.3: Next implementation using a dynamic operation generator.

strategy was adjusted in this thesis to supplement the generators of FsCheck.
Object attributes and reference attributes rely on other elements. An object attribute, for

example, is an attribute that has other attributes as children and is accessed via list operators.
Since the structure of the REM is flat and not nested it has to be parsed multiple times. This
behavior is similar to a multi-pass compiler.

To illustrate the following functionality we will make some simplifications to our model.
In our case study, we present the results of our approach with more complex models. Here, we
will use the smallest module available from our industry partner AVL, the incident manager
module (ICM). This module consists of only one REM. Therefore, no switching between REMs
has to be performed. We further simplify our model by assuming there is only one incident
object processed throughout our test case. The state machine in Figure 5.8 represents the
possible tasks of one incident object.

A task in the REM is equivalent to a transition in the EFSM or an operation in the test case
of our PBT tool. As explained in Chapter 3, the user has to supply the Next function which
returns a generator for the operations. The generator is shown in Listing 5.3.

First, a set of generators is chosen which contains only possible transitions from the current
state. They are stored in wvs (WeightedValues). Out of those one transition generator is
chosen to take into account the weights of each generator. For this transition, all possible
next states are considered and one is chosen. Finally, the required attributes for the transition
are generated with the previously explained principle. With this information, we are able to
generate a dynamic operation which transitions the SUT and model from a source state to a

Chapter 5. Using Rule-Engine Models in Model-Based Testing 45

1 public class DynamicOperation : Operation<IModule, ModelEFSM> {

2 string TransitionName { get; set; }

3 string NextState { get; set; }

4 Dictionary<string, object> AttributeData { get; set; }

5

6 public DynamicOperation(string transition,

7 Dictionary<string, object> attributeData, string nextState) {

8 TransitionName = transition;

9 NextState = nextState;

10 AttributeData = attributeData;

11 }

12

13 public override bool Pre(ModelEFSM m) {

14 Transition transition = m.ActiveRuleEngineModel.Transitions[TransitionName];

15 var isValid = transition.From.Contains(m.State) ||

16 transition.From.Contains(Const.GlobalState);

17 return isValid;

18 }

19 public override ModelEFSM Run(ModelEFSM m) {

20 var n = new ModelEFSM(m);

21 n.ActiveRuleEngineModel.MakeTransition(TransitionName,

22 NextState, n.CurrentObjectIndex);

23 return n;

24 }

25 public override Property Check(IModule a, ModelEFSM m) {

26 Transition transition = m.ActiveRuleEngineModel.Transitions[TransitionName];

27 a.Task(m.ActiveRuleEngineModel, transition, AttributeData, NextState);

28 var hasSameState = a.State.Equals(m.State);

29 return hasSameState.ToProperty();

30 }

31 public override string ToString() { return TransitionName; }

32 }

Listing 5.4: Implementation of a dynamic operation.

destination state. Note that only possible transitions and states are considered.
In order to handle the execution of transitions, dynamic operations are implemented. A

dynamic operation supports all types of transitions of the EFSM and is shown in Listing 5.4.
The previously introduced generator function returns an instance of this dynamic operation.

The transition, the next state, and the attributed data are passed into the operation as
constructor arguments (Lines 6-11). The precondition (Lines 13-18) verifies if the current
operation is valid in the context. As mentioned before only valid transitions are chosen. For
regular test execution, the precondition can be omitted. However, if shrinking is enabled
the precondition has to be implemented to ensure that no invalid sequences are created by
deleting wrong operations.

In Run (Lines 19-24) the transition is executed on the model. Note that the new model is a
deep copy of the old one. FsCheck will store the returned model of the function later to test the
postcondition. If only one model object is created throughout the run, following operations
will alter the model object resulting in incorrect checks for the preceding operations. A short
example will explain this problem. Assume a model with two states s0 and s1 and transitions

46 Chapter 5. Using Rule-Engine Models in Model-Based Testing

that t0 and t1 which can be executed from any state and will set the model state to their
respective numbers. We further assume the test sequence t0, t1. If we only create one model
object throughout the test run the state after t0 will be s0. Then, the next transition t1 is
executed and the model state is changed to s1. Since all operations are run on the model
before the first one is checked the model state is already changed to s1 when checked in the
first operation. It should be s0. It is in general better to create value types over reference types
for these models if possible. Due to the complexity of the case study, this was not possible in
the context of the thesis.

The operation is executed on the actual SUT (Line 26-27). The IModule class represents the
interface to the SUT. It executes the corresponding task on the SUT and also sets the attributes
of the task. This is done via reflections. Finally, the state of the model is compared with
the state of the SUT and then returned as a property (Line 28-29). In this section, it would
also be possible to compare the values of the previously set attributes to ensure they were set
properly. This would strengthen our postcondition. The ToString function is overwritten to
support pretty printing of operation sequences.

Embedding the logic of transitions in a dynamic operation rather than individual opera-
tions with their respective attributed data reduces the amount of manual coding. Once the
transformation steps from the REM to the EFSM and the integration in FsCheck is hooked up
the dynamic operation is able to handle most transitions needed in a test case. However, as
in most real examples, there are some exceptions. Some operations create new objects such
as the IncidentCreateTask. In order to handle multiple objects of a module at the same time,
the state of each module has to be saved and the currently active object has to be remembered
by the model. In the application, an object can be seen as a new tab in a web-form. It has
the same type of input fields, but the specific provided data is different. Multiple of those
tabs can be open at the same time. In order to switch between those objects, a SelectOperation
was added to the generator functions. If this operation is executed the currently active object
of the REM is switched. The state and the id of the object are compared between model and
SUT.

As mentioned before, in the case of the ICM the module consists of only one REM. Other
modules usually contain multiple REMs. In order to allow multiple REMs simultaneously in
a test case, a similar principle to the SelectOperation was implemented. Instead of switching
between objects of one REM, we switch the whole REM with another one. This is the called
SelectREMOperation. The postcondition for this operation is the comparison of the current
object state of the currently active REM. It is straightforward to take this concept of selecting
different items at a given layer to the next layer by switching between whole modules. How-
ever, it was not implemented during the case study since the focus was on testing the modules
separately. Test cases would become verbose and more time-consuming.

Those two artificially created operations are also included in the operation generator. The
operations are weighted in relation to the maximum amount of possible transitions. This is
done to ensure that the select operations are not executed too often. The operation generator
shown before in this chapter can be adjusted to not only create dynamic operations but also
consider the select operations by using one of the generators with their respective weight.
This can be done by using the following FsCheck command:

Gen.OneO f (Gen.Frequency(gens)), where gens is the set of generators.

5.2.3 Optional Attributes

So far only attributes that are required to perform a task were considered. Yet there are
additional attributes that can be set when a task is performed. For an incident object, this
can include the severity of the issue or additional documents to describe the issue further. In

Chapter 5. Using Rule-Engine Models in Model-Based Testing 47

a small REM such as the ICM, there are about 50 different attributes. Bigger REMs contain
up to 1000 attributes, while most of the attributes are optional. This means, testing optional
attributes is a big part of testing the system. Fredlund et al. [45] used JSON objects that
have optional keys and generated them using QuviQ QuickCheck. They generate a random
natural number greater or equal to the number of required properties. First, the required
properties are generated. Then, additional properties are generated and it is ensured that
they are unique. They did not further specify with which underlying distribution the natural
number is generated.

For our case study, we tried out the described approach. If the natural number is generated
with a uniform distribution it is as likely that almost all optional attributes are added to a task
as none. With a REM consisting of up to 1000 attributes, this resulted in tasks being very
different from actual user behavior. In addition, the execution time of a test case increased
significantly.

In order to adjust the number of additional attributes for each REM individually a more
dynamic approach is needed. Every time a task is executed a ChooseFunction is called that
takes a randomly generated value x between 0 and 1 as input to calculate its output y, which
again has to be between 0 and 1, where y is the percentage of optional attributes to be included.
This ChooseFunction is called in an ElementSelector to select n random unique attributes out
of the set of all attributes. By implementing the ChooseFunction as an interface or an abstract
class the ability to switch between different functions is given. For example, if an exponenti-
ation function such as x9 is chosen the expected amount of attributes per task is 10 percent.
This can be easily calculated by solving the following basic integral:

E(x) =
R 1

0 x9dx
It is also possible to disable optional attributes by implementing a ChooseFunction which

always returns 0. Using a ZeroFunction as a ChooseFunction is equal to the approach pre-
sented previously, only considering the required attributes. The distributions can be set indi-
vidually for each test case or for each REM allowing proper configurations for smaller and
bigger models as well as for test cases that focus on different aspects of the SUT. It is easy
to extend this approach to other useful functions such as polynomial functions which are
based on real data. Solely a new class has to be derived from ChooseFunction implementing
a function transforming an x value to a y value, both between 0 and 1. Another interesting
usage could be to deliberately choose generators for attributes that test negative behavior. In
the case study, only values between the accepted boundaries are tested. However, it might be
interesting to test how the system responds to invalid input. This could be done by generating
values that are prohibited by the REM. Since this is not straightforward for all attributes this
was out of the scope of this thesis but could be a logical next step of creating a richer model.

48

6 Integration of External Test-Case Generators

The transformation process of rule-engine models (REMs) to extended finite-state machines
(EFSMs) and how to integrate them into a property-based testing (PBT) tool was shown in
the previous chapter. This chapter will focus on how external test-case generators can be
integrated into that process. This gives the tester more control on how to produce meaningful
operation sequences for the test cases. First, the interface for external test-case generators is
explained and how it can be integrated into a PBT tool. Then, the integration process is shown
with a simple regex-based operation generator. Finally, the integration process is shown with
MoMuT as a generator for abstract test-cases. The test cases generated from MoMuT were
also used to test the system in the case study.

6.1 Interface for External Test-Case Generators

The idea of the presented approach is to define an external generator to create a sequence of
operations that form a test case. A PBT tool like FsCheck uses a function Next to generate the
next operation. That means the scope of the Next function focuses on one operation at a time.
The operation that is currently generated relies on the current state of the model. The idea to
generate one operation at a time leads us to only consider the current state of the model to
generate the next operations. However, there are other data that can be utilized to generate
a sequence of operations. Before executing any operation on the model, we can generate the
sequence from an external source. This allows us to generate operations that not only rely on
the current state. It is possible to also include the path up to the operation and even after the
operation itself. This allows better control of the generation of the operation sequence since
this process is decoupled from the PBT tool.

The simplest use-case of an external generator could be to replay test cases from a PBT
tool. We generate a sequence from a PBT tool and save it externally. This sequence can then
be reused as an external source and supplied to the PBT tool via the interface. This means
we are effectively replaying the previously run test case. This use-case was discovered as a
by-product of the thesis since it was very useful to try to reproduce errors or to create very
specific test cases. FsCheck already supplies some sort of replay functionality. It is possible
to set the seed of the random generator and make the test sequence generation deterministic.
That way it is possible to replay a certain test case over again. However, as soon as the
model changes or multiple test cases need to be replayed, or just some parts of the sequence
should be replayed, this approach does not work anymore. Here, the replay functionality
via an external generator showed its usefulness since it could cover all those cases. It proved
to be incredibly useful for regression testing of the test framework itself. If any changes on
the test framework were implemented, short test cases were written in order to target those.
This usually resulted in finding mistakes earlier as compared to waiting until the generators
produce a sequence that operates in the area that was changed.

6.1.1 Interface Design

In order to inject an external sequence in FsCheck, an interface to the tool had to be built. Note
that interface does not refer to the programming structure used in object-oriented languages
(where interface describes a set of methods that an instance of a class has without defining
the semantics of the methods). Here, interface refers to a shared boundary between two
components, namely the PBT tool and the external generator, to exchange the information
from both components. First, we define our external generator genex as a set of operation

Chapter 6. Integration of External Test-Case Generators 49

arguments:

genex =d f OperationArg⇤

OperationArg can be of any type. It is up to the specific implementation of the exter-
nal generator how and of what type the set of operation arguments is generated. Note that
OperationArg is deliberately defined as generic as possible. While the arguments may contain
only the type of the operation, they can also partly or fully supply all the information neces-
sary to perform an operation. For example, the attributes of the REM can also be supplied
from the external generator. In our case study, we supplied only the type of the operation.
Based on the type, we select one of the internal generators introduced in the last chapter to
generate the attributes.

The structure of a test case in PBT tools can be defined as shown in Figure 6.1. A test case
consists of a sequence of operations. Operations were already defined in Section 5.2 of the
previous chapter. For our interface, we extend the previously defined operations by adding a
generated data to the operation. The external generator generates data based on the type of
operation. The data can be used in Pre, Run, and Check. Note that data is deliberately defined
as generic as possible. While data can contain only the type of the operation, it can also
partly or fully supply all the information necessary to perform an operation. For example,
the attributes of the REM can also be supplied from the external generator. In our case study,
we supply only the type of the operation. Based on the type, we select one of the generators
introduced in the last chapter to generate the attributes. Figure 6.2 shows a test case with an
external generator.

Traditionally, the length of a test case is decided by the PBT tool. Based on the current
state S an operation opexi is then generated choosing the type of operation and the data of the
operation with generators. In the presented approach the external generator is responsible
for the length of the sequence. That means that in order to apply this approach it must be
possible to control the length of an operation sequence. The type of operation is also defined
by the external generator. The information needed for an operation can be supplied by either
the external generator as the OperationArg, a regular PBT generator or a combination of both.
For example, in the case study, the external generator decides on the types of operations and
on the length of the operation sequence. A PBT tool then generates the attributes for each
operation.

6.1.2 Interface Implementation

The interface was implemented by extending the abstract class Machine of FsCheck with new
functionality. An external machine was derived from the machine which implements the new
functionality. Figure 6.3 shows the new components and how they are wired together with the
regular FsCheck parts. In FsCheck the Machine executes the operations on the model and the
SUT. FsCheck uses a Runner, which is responsible to check the machine and reports the test
results. The machine has to be transformed into a property to be checked. This functionality is

Testcase =d f Operationex⇤, where
Operationex =d f op(argex : OperationArg, Pre : Model ! bool,

Run : Model ! Model, Check : Model ⇥ SUT ! bool)

Figure 6.1: Test-case structure using operation arguments from an external generator

50 Chapter 6. Integration of External Test-Case Generators

S0 S1

External Generator

SN

opex1(argex1,...) opexN(argexN,...)opex2(argex2,...)

Figure 6.2: Test case (sequence of operations) utilizing externally generated arguments.

cmp testcasegenerator

Test Execution Tool
«component»

+ ExternalMachine : C…SUT

SUT

Model

Test Case Arguments

Model

+ Machine : C…

SUT

Property
Model

+ Runner : C…

Property

Results

Test Case Arguments

SUT

ResultsModel

External Generator
«component»

Test Case Arguments

Figure 6.3: Component diagram showing how the FsCheck test-case generation process
is extended to support external generators.

already provided by FsCheck and most parts are hidden from the user. The ExternalMachine
is responsible for transforming the external test arguments into operations and forwarding the
SUT and model to the machine. An external generator has to be linked to the ExternalMachine
to provide the test-case arguments. There are two types of arguments to create test sequences,
SetupArg and OperationArg. They will be explained later in this section. Usually, the external
generator will also require information from the SUT or the model. This is not shown in the
diagram since it is not necessarily required.

Note that the ExternalMachine is abstract, this means the user will have to implement
how the arguments are used to generate test sequences himself. In the following, the im-
plementation of the ExternalMachine and how the arguments can be used is explained. The
implementation is shown in Listing 6.1.

The first notable extensions are the two new generic types: SetupArg and OperationArg.
Those are the arguments that contain the information to generate the initial state and the
operations in the Setup and Next functions. The machine contains a queue to store the data
needed for test-case generation. Each element in the queue represents a single test case.
This element is an object of the OperationArguments class. A MachineRunArguments object
contains a SetupArgument and a queue of OperationArguments. During a regular FsCheck test
case, setup is called in the beginning to create the initial state of the model and then operations
are generated by calling Next every time. It is possible to supply external information to
the Setup and Next functions through the MachineRunArguments of the ExternalMachine.
The operations can be supplied directly or they can be created from the arguments in the
generation process. By filling the outer queue with OperationArguments the length of the test
case is defined and not variable, as it is usually the case in FsCheck. How this is accomplished

Chapter 6. Integration of External Test-Case Generators 51

1 public abstract class ExternalMachine<Actual, Model, SetupArg, OperationArg>

2 : Machine<Actual, Model> {

3 public Queue<MachineRunArguments<SetupArg, OperationArg>> TestCases

4 { get; protected set; }

5 MachineRunArguments<SetupArg, OperationArg> currentTest;

6

7 public ExternalMachine(Queue<MachineRunArguments<SetupArg,

8 OperationArg>> testcases) : base(int.MaxValue) {

9 TestCases = testcases;

10 }

11

12 public sealed override Arbitrary<Setup<Actual, Model>> Setup {

13 get {

14 if (currentTest == null || (TestCases.Count != 0 && currentTest.Count == 0))

15 currentTest = TestCases.Dequeue();

16 return SetupArbitrary(currentTest.SetupArgument);

17 }

18 }

19 public abstract Arbitrary<Setup<Actual, Model>> SetupArbitrary(SetupArg arg);

20

21 public sealed override Gen<Operation<Actual, Model>> Next(Model m) {

22 if (currentTest.Count == 0)

23 return Gen.Constant((Operation<Actual, Model>)

24 new StopOperation<Actual, Model>());

25

26 var arg = currentTest.Dequeue();

27 return Next(m, arg);

28 }

29 public abstract Gen<Operation<Actual, Model>> Next(Model m, OperationArg arg);

30 }

Listing 6.1: External machine which represents the interface for external generators.

is explained later in this section. Simplified, the interface contains a queue of queues where
the outer queue represents the arguments for a test case and the inner queue represents the
arguments for an operation. The data in the queues is supplied by external generators and
is passed to the PBT tool to generate its sequences. In this thesis, the data supplied by the
external tool were generated before executing any test cases. However, it is possible to access
the external generator during the test-case execution. This allows us to use feedback from the
SUT to generate new test cases.

In Lines 12-18 the Setup function is implemented. The function is sealed in order to enforce
the use of the new SetupArbitrary function in Line 19, which receives a setup argument
as input. The Setup simply dequeues a test case and assigns it as the current test. The
new SetupArbitrary function is then called with the setup argument. The user now has to
implement the SetupArbitrary instead of the Setup function. In Lines 21-28 the Next function
is shown. Similar to Setup, this function dequeues an argument which is then passed into
the new Next function in Line 29. Again, the function is sealed to enforce the use of the
new function and the new function has to be supplied by the user in a derived class. In Line
22-24 a stop operation is generated if the case is finished. The stop operation is a functionality
that was implemented into FsCheck in order to ease the implementation of this approach. It

52 Chapter 6. Integration of External Test-Case Generators

1 public class BankRegexBasedMachine :

2 ExternalMachine<BankAccount, int, int, string> {

3

4 public BankRegexBasedMachine(Queue<MachineRunArguments<int, string>> tcs) :

5 base(tcs) { }

6 public override Arbitrary<Setup<BankAccount, int>> SetupArbitrary(int ignored) {

7 return Arb.From(new BankAccountSetupArb());

8 }

9 public override Gen<Operation<BankAccount, int>> Next(int m, string opName) {

10 if (opName.Equals("Deposit"))

11 return Arb.Default.PositiveInt().Generator.Select(i =>

12 (Operation<BankAccount, int>)new DepositOperation(i.Get));

13 else if (opName.Equals("Withdraw"))

14 return Arb.Default.PositiveInt().Generator.Select(i =>

15 (Operation<BankAccount, int>)new WithdrawOperation(i.Get));

16 else

17 throw new NotImplementedException("argument cannot be 0");

18 }

19 }

Listing 6.2: A regex-based external machine for testing a bank account.

is now part of the FsCheck library. When a stop operation is returned by the Next function,
FsCheck identifies this as the end of the current test case and stops generating new operations.
This can be useful if a model is in a final state or as in our case if the test case needs to be
terminated manually. If the functionality of a PBT tool does not support a stop operation, an
operation using the null object pattern [77] can be implemented to generate operations that
do not change anything on the model or SUT.

6.2 Regex-Based Sequence Integration

To show how an external generator can be included into a PBT tool, a regular expression
(regex)-based sequence generator was created and integrated into FsCheck. The generator
only serves as an example for demonstration purposes. The generator receives a regex as input
to create a sequence of identifiers encoded as a string. These identifiers are then checked to cre-
ate a specific type of operation. For example, by using the regex (Operation1) + (Operation2)⇤
the generator will create test cases which always start with at least one operation of the first
type and then may add operations of the second type.

We will revisit the bank-account example from previous chapters first introduced in Sec-
tion 3.4.2. In Listing 6.2, an implementation based on the ExternalMachine for the bank
account is presented.

The SetupArgument in Line 6 is of type integer and is ignored. We could use this argument
to set the initial value of the bank account. In our example we chose to initialize every account
without any money on it to keep the example simple. The initial state of the bank account is
generated using the PBT generators. The OperationArgument is of type string and contains the
name of the operation to be created. In Lines 9-18 the Next function is shown. It implements
the corresponding abstract function of Listing 6.1. In the previous case (Listing 3.13), one
of the two generators for the operations was chosen randomly with the FsCheck function
Gen.OneO f . The type of operation is decided by the name of the operation (opName) which

Chapter 6. Integration of External Test-Case Generators 53

1 [TestMethod]

2 public void BankRegexBasedTest() {

3 var gen = new SequenceGenerator(new string[] { "Deposit", "Withdraw" });

4 var regex = "Withdraw(Withdraw)+(Withdraw|Deposit)+";

5 var tests = gen.Generate(regex, 10);

6

7 var config = Configuration.VerboseThrowOnFailure;

8 config.MaxNbOfTest = tests.Count;

9 new BankRegexBasedMachine(tests).ToProperty().Check(config);

10 }

Listing 6.3: A test method showing the regex-based generator.

was generated by the external regex-generator. The value that is withdrawn or deposited is
generated as previously, using the tools generators. The property can then be checked as
shown in thetest method in Listing 6.3. In order to test the property of an external machine
the maximum number of test cases has to be set in the configuration. This is shown in Line
8. A queue of MachineRunArguments named tests, which contains the sequence of operation
names, is passed to the constructor in Line 9.

Via a generator function which contains a regex, the queue of arguments is generated.
Each argument contains the needed data to create an operation. It is also possible to supply
the whole operation as an argument. Then the queue of arguments is, in fact, a queue of
operations. Fare1, a .NET port for Google’s java library Xeger2 was integrated to generate
strings from the supplied regex. Fare is explained in more detail in Section 5.2.2. Listing 6.4
shows a generator function which creates the queue of MachineRunArguments. Note that a
MachineRunArgument is not a test case but rather a structure that contains all the data needed
to create the operations for a test case.

For each test case, a string is generated based on the regex with Fare. One generated
string is a sequence of operation types which represents a test case. It has to be parsed and
stored in a queue in order to be available within our external Machine. The operation names
are stripped from this string one after the other and added to the operation argument queue.
This queue together with the unused SetupArgument forms one test case and is added to the
resulting queue in Line 21. Note that a number of test cases is supplied to the function and
can be generated to ensure the flexibility of the PBT approach.

A test case executed with the regular FsCheck Maschine interface will create sequences
which will create both operations approximately as often. Of course, the likelihood of the
operations can be changed to favor one operation over the other. However, the flexibility is
limited. With a regex, we can focus better on certain aspects of the system by adjusting the
regex. A specification that focuses heavily on withdrawing can utilize the following regex
"Withdraw(Withdraw)+(Withdraw|Deposit)+". The operation sequence will always start with a
Withdraw operation followed by 1 to n additional Withdraw operations. Only after that 1 to
n operations follow where Withdraw and Deposit are as likely to be chosen. The minimum
length of a sequence is three, while there are at least two Withdraw operations at the start. In
a specification as simple as a bank-account model, the sequences based on regex might not
be very useful since the random generator of a PBT tool will most likely cover enough useful
scenarios. With more complex systems this approach can be applied to target certain critical
scenarios that are more likely to produce errors. It can also help to target rare operations that

1https://github.com/moodmosaic/Fare
2https://code.google.com/archive/p/xeger/

https://github.com/moodmosaic/Fare
https://code.google.com/archive/p/xeger/

54 Chapter 6. Integration of External Test-Case Generators

1 public Queue<MachineRunArguments<int,string>> Generate(string regex, int numTests) {

2 var tests = new Queue<MachineRunArguments<int, string>>();

3 var gen = new Xeger(regex);

4

5 for (int i = 0; i < numTests; i++) {

6 var s = gen.Generate();

7 var operationArgs = new Queue<string>();

8 while (s.Length > 0) {

9 string foundOperation = null;

10 foreach (var op in new string[] { "Deposit","Withdraw"}) {

11 if (s.StartsWith(op)) {

12 foundOperation = op;

13 break;

14 }

15 }

16 if (foundOperation == null)

17 throw new Exception("Generated String is corrupt.");

18 s = s.Substring(foundOperation.Length);

19 operationArgs.Enqueue(foundOperation);

20 }

21 tests.Enqueue(new MachineRunArguments<int, string>(0, operationArgs));

22 }

23 return tests;

24 }

Listing 6.4: Generator function that is based on regular expressions.

can only be triggered in certain corner cases.
In Table 6.1 sequences from three different approaches are shown. Regular FsCheck se-

quences, Fs, weighted FsCheck sequences Fsw where 70 percent withdraw operations and 30

percent deposit operations are generated and sequences from the regex generator, regex. In the
table, the operations are abbreviated with their first letter. While we only show two sequences
per generation approach we can still observe the different tendencies between FsCheck se-
quences and the ones from the regex generator. As noted before the regex sequences always
start with withdraw operations and they follow a clearer pattern than the randomly generated
FsCheck sequences.

6.3 MoMuT Integration

In this section, it is shown how to run MoMuT as an external test sequence generator and
integrate the generated sequences in a PBT tool to create a specification. How to create MBT
tests with MoMuT was shown in Chapter 4. First, the transformation from EFSMs to the
object-oriented action system (OOAS) language is broken down. Then, it is explained how
to implement observer automata to achieve certain test goals and form a specification for
MoMuT. Mutation operators are then applied to create faulty specifications. Finally, the test
sequences created by the MoMuT backend are integrated into FsCheck. The method explained
here is one of the evaluated methods in the case study for test-case generation. This process is
shown in Figure 6.4. The flowchart is a more detailed and specialized version of the flowchart
in Figure 5.1 from the previous chapter.

Chapter 6. Integration of External Test-Case Generators 55

Fs Fsw regex
1 D:5 ! 33 W:3 ! 25 D:2 ! 78 W:5 ! 35 W:7 ! 88 W:5 ! 17

2 D:6 ! 39 W:1 ! 24 D:7 ! 85 W:1 ! 34 W:2 ! 86 W:4 ! 13

3 D:2 ! 41 D:1 ! 25 W:4 ! 81 D:10 ! 44 W:7 ! 79 W:10 ! 3

4 D:1 ! 42 D:7 ! 32 W:3 ! 78 W:4 ! 75 W:1 ! 2

5 D:2 ! 44 W:2 ! 30 W:8 ! 70 W:3 ! 72 D:7 ! 9

6 D:10 ! 54 W:3 ! 27 W:1 ! 69 D:6 ! 78 D:5 ! 14

7 D:1 ! 55 D:5 ! 74 D:2 ! 80 W:8 ! 6

8 W:1 ! 54 W:5 ! 69 W:1 ! 79

9 W:3 ! 51 W:9 ! 70

10 W:3 ! 48 W:6 ! 64

11 D:3 ! 51

Table 6.1: Comparison between regular FsCheck and regex generated sequences.

TransformationRule Engine
Models

Extended
Finite State
Machines

Property-based
Testing Tool Model-based Tests

Transformation
Object-

oriented Action
Systems

OOAS
Mutants

MoMuT
Backend

Abstract
Test Cases

PBT Tool
Integration

Mutation
Operators

Observer
Automata

OOAS
Specification

Figure 6.4: Flowchart of the proposed testing approach using MoMuT as an external test-
case generator

For this approach, the REMs are translated to EFSMs. The EFSMs are then translated into
an OOAS abstract syntax tree (AST). This syntax tree is then modified with observer automata
to fulfill certain test goals. The AST represents the original model which is an abstract rep-
resentation of the input for MoMuT. In order to acquire mutants, the tree is then modified
using mutation operators. The original model and the mutants are then translated to a SICS-
tus Prolog program and passed as input for MoMuT’s mutation testing. MoMuT then saves
the results as abstract test-cases. One abstract test-case is the sequence of operations from the
PBT tool’s perspective. That means that MoMuT decides on the length of each sequence and
supplies the types of operations to the ExternalMachine presented in this chapter. The exact
data of each operation is still provided by the PBT tool’s generators. It is computationally
too expensive to model the system at the same level of detail as it was done with the EFSMs.
Therefore, mutation-based model testing is only applied to decide on the sequence of oper-
ations and the more detailed information, namely the attributes of the tasks, are generated
using a PBT tool.

6.3.1 From EFSMs to Object-Oriented Action Systems

Since MoMuT cannot directly work on REMs to generate sequences, they first have to be
translated into OOAS to serve as input for MoMuT. REMs and their use in this thesis were
explained in Chapter 5. Since the REMs are already parsed into EFSMs and contained in the

56 Chapter 6. Integration of External Test-Case Generators

TL =d f (model, objIdx, objCnt, efsmStates), where
model = EnumType({efsm.Name | efsm 2 Module})

objIdx = IntType({�1, ..., n � 1})
objCnt = IntType({0, ..., n})

efsmStates = [EnumType({efsm.S}) | efsm 2 Module]

Figure 6.5: Definition of the type list of the abstract syntax tree for object-oriented action
systems.

VAR =d f {Variable(currentModel, model, 0)} [
{Variable(efsm.Nameˆ”ObjCnt”, objCnt, 0) | efsm 2 Module} [
{Variable(efsm.Nameˆ”ObjIdx”, ObjIdx,�1) | efsm 2 Module} [
{Variable(efsm.Nameˆiˆ”State”, s, efsm.S0) |
i 2 0..n ^ efsm 2 Module ^ s 2 efsmStates ^ s = EnumType(e f sm.S)}

Figure 6.6: Definition of the variable definition and initialization block.

C# framework developed for this thesis the EFSMs are translated to OOAS rather than the
REMs themselves. In order to print the OOAS source code needed as input for MoMuT an
abstract syntax tree (AST) of OOAS that emphasizes the EFSM features was integrated. In this
section, the translation step from a set of EFSMs to the AST is explained. In the case study,
the system consists of multiple modules which again consist of multiple REMs. The AST
represents one module, or in other words, a set of EFSMs which got translated from REMs.
This is shown in the following definition:

Module =d f {BuildEFSM(rem) | rem 2 REMs}

The AST for OOAS can be defined as a type list TL and the actual action system AS. This
results in the following defintion: OOAS =d f (TL ⇥ AS). The definition of the type list TL is
shown in Figure 6.5.

The type model is an enumeration type of the EFSMs in the AST. It indicates which model
is currently selected. This corresponds to the SelectREM operation of the FsCheck model.
The object index objIdx and object count objCnt keep track of the number of objects that are
created for each EFSM and which object is currently selected. The objIdx is the currently
selected object from the Select operation and the objCnt limits which objects can be selected.
An object that is not yet created cannot be selected. The number of objects that can be created
has to be limited in order to avoid state explosion when exploring the model with MoMuT.
efsmStates is a sequence of enumeration types. For each EFSM such an enumeration type
consisting of the states of the respective EFSM is created. They indicate in which state the
current EFSM and therefore the model is.

The actual action system AS consists of a variable definition and initialization block VAR
and the set of actions ACT which represents the source code for the named actions as well as
the action calls in the do-od block. The definition of the AST of the AS is the following: AS =d f
(VAR ⇥ ACT). Listing 6.6 shows the definition of the variable definition and initialization
block VAR.

The set of variables VAR calls the function Variable to create the variables. Each variable

Chapter 6. Integration of External Test-Case Generators 57

ACT =d f {BuildSelectREM} [
{BuildSelect(efsm) | efsm 2 Module} [
{BuildDynamic(t, efsm, i) | i 2 0..n ^ efsm 2 Module ^ t 2 efsm.T}

Figure 6.7: Definition of the action block.

BuildSelectREM =d f (SelectREM, (m, model), m 6= currentModel,
(currentModel := m;), input)

BuildSelect : EFSM ! Action
BuildSelect(efsm) =d f (”Select”ˆefsm.Name, (i, efsm.Nameˆ”ObjIdx”),

i � 0 ^ i 6= efsm.Nameˆ”ObjIdx” ^ i < efsm.Nameˆ”ObjCnt”,
(efsm.Nameˆ”ObjIdx” := i), input)

Figure 6.8: Build functions for select actions.

consists of an identifier, a variable type, and an initialization value. The + operator symbolizes
string concatenation. The VAR block consists of a variable that saves which model is currently
selected currentModel, a variable for each EFSM to count how many objects are created, a
variable for each EFSM that saves the currently selected object index of the EFSM and a state
variable for each object of each EFSM. Note that in this context each object refers to the amount
of possibly created objects which is delimited by setting n. The next part of the AS is the set
of actions ACT. It is defined in Listing 6.7

The model has one action to select an EFSM (SelectREM), for each EFSM a regular Select
action will select objects within the EFSM. Finally, we have actions for each transition of all
EFSMs in the module. The last set of actions are called DynamicAction since they are created
dynamically from the REMs. For each type of action, a build function will create the action. In
Section 4.2.1 it was explained that an action has a label definition, a parameter list, a guard, a
body and a type that marks an action as input, output or internal. All actions that are built in
this translation process are marked as input. We will denote an Action of the AST as a 5-tuple
a =d f (l, p, g, b, t), where

l is the label definition,
p is a set of parameters,
g is the enabling function named guard,
b is a set of statements named body,
t is the type of action.

A parameter is a 2-tuple p =d f (id, t) where id is an identifier and t 2 TL is a type. With
the above definition, it is now possible to describe the build functions from the ACT block.
The build functions for SelectREM and Select actions are shown in Listing 6.8.

The two types of actions can be implemented straightforwardly. Their guards ensure that
only elements can be selected that are currently not selected and that the objects that get
selected already exist. The body of actions only consists of one statement which changes the
value of the corresponding variable from the VAR block.

Dynamic actions are composed of transitions of the EFSMs. They are the core to changing
the model’s state. The constrained-based backend does not support complex data types such

58 Chapter 6. Integration of External Test-Case Generators

BuildDynamic : Transition ⇥ EFSM ⇥ Z ! Action

BuildDynamic(t, efsm, n) =d f

(
BuildCreate(t, efsm, n), if CanCreate(t)
BuildRegular(t, efsm, n), otherwise

BuildRegular(t, efsm, n) = (efsm.Nameˆt.Nameˆn, ∆,
currentModel = efsm.Name ^ efsm.Nameˆ”ObjIdx” = n,
(efsm.Nameˆnˆ”State” = efsm.Nameˆt.d), input)

BuildCreate(t, efsm, n) = (efsm.Nameˆt.Nameˆn, ∆, currentModel = efsm.Name ^
efsm.Nameˆ”ObjIdx” = n � 1 ^ efsm.Nameˆ”ObjCnt” = n,
0efsm.Nameˆnˆ”State” = efsm.Nameˆt.d, efsm.Name
+ ”ObjIdx” = n,0 efsm.Name + ”ObjCnt” = (n + 1)), input)

Figure 6.9: Build functions for dynamic actions.

as lists. MoMuT offers an alternative transformation step to action systems [61]. Since our
approach generates the OOAS models from EFSMs we have to unroll list types ourselves.
Instead of using an array that contains each object and accesses them via an index, we create
separate variables. That has the implication that for each action we need to set the state of
the current object explicitly and not via an index. The build function for dynamic actions is
shown in Listing 6.9.

The first step in creating a dynamic action is deciding if it creates objects in the SUT or
not. Unfortunately, this information was not encoded in the REM and is therefore not part of
the syntax. Therefore, determining if a task in the REM creates an object had to be analyzed
manually. This information was then stored in a lookup table. The helper function CanCreate
looks up the value in the table and returns true in case the task creates objects.

First, the regular type of dynamic actions is explained. The action name is a composition
of the identifiers of the EFSM, the transition and an integer number referring to the object.
The set of parameters is empty. The guard of the action is only enabled if the corresponding
EFSM and the corresponding object is selected. The action simply changes the state of the
object.

Actions that create objects are slightly more complicated. The object index is created with
an offset of one since the action itself will create the object which means that initially the
index is not set (-1). Furthermore, the object count is restricted. Only if the last created object
is selected it is allowed to create a new object. This restriction was implemented since lists
are not permitted and in order to keep the model simple. By only allowing the creation of
elements if the last object is selected it is precisely defined which index the new object will
have. In addition to setting the object state, the index of the currently selected object and the
count of objects for the EFSM have to be increased.

It is possible to combine the dynamic actions associated with one transition. Currently,
each object has a separate action in order to define the AST concisely. However, it is possible
to create another DiscreteActionBody that has a parallel composition to distinguish the cases
for each object.

In Figure 6.10 state machines of ICM objects and Select actions are shown. This is a
simplified representation of the ICM module. Note that the Select and IncidentCreateTask
actions are actually valid from any state but were only shown once as they would otherwise
obscure the figure.

Chapter 6. Integration of External Test-Case Generators 59

Incident 0 Incident 1
IncidentGlobal

Submitted

IncidentCreateTask

IncidentGlobal
Select(1)

IncidentEditTask

IncidentEditWithVersionTask

Closed

IncidentCloseTask

Submitted

IncidentCreateTask

IncidentEditTask

IncidentEditWithVersionTask

Closed

IncidentCloseTask

Select(0)

Figure 6.10: ICM module consisting of 2 ICM objects and Select actions.

A simplified OOAS model for the ICM module that is generated by the AST and combines
the dynamic actions is shown in Listing 6.5.

Lines 1-5 contain the type list TL. Since only one REM is needed to represent the whole
ICM module only one state type needs to be created. Following the TL the actual action
system AS is represented in Lines 6-43. In Lines 8-13 the variable block VAR of the AS is
shown. The currentModel is only used in SelectREM which does not exist in a module with
only one REM, therefore it is only needed if multiple REMs exist. The parameter n is set
to two, only the allowing creation of two objects per REM. This keeps the example concise.
Inside the action block, one action that creates objects and one regular action is shown. The
actions for one transition are merged together by using nested require statements. The Create
transition is shown in Lines 15-22. The source code for the second object is omitted and
marked by the dots in Line 22. Also, the source code for the other transitions is omitted.
Lines 33-36 show the Select action which selects the objects in a REM. The SelectREM action
is omitted since only one REM is used in the example. The do-od block is shown in Lines
38-42. It contains the calls to the named actions with the correct parameters. Note that an
action a 2 ACT from the AST is responsible for creating both source code blocks, the named
action in the NamedActionList and the action call in the do-od block ActionCallBlock.

6.3.2 Test Goals via Observer Automata

The presented action system from the previous section has only input actions. No mutation
will ever propagate an invalid output since there is no output except the quiescent transitions.
This means that it is not possible to perform a useful ioco-check. Adding simple output actions
that report the current state would yield us too short test cases as they would be possible in
each state. In order to generate longer sequences and achieve test goals we integrated observer
automata into the OOAS model. Combining observer automata with mutation testing allows
us to generate test cases that can find a difference in the coverage of a model and a mutant.
We use the accepting state of the observer as observable output. When non-conformance is
found, then we know that the coverage is different, because either the observer of the model
or of the mutant are in the accepting state, but not both.

60 Chapter 6. Integration of External Test-Case Generators

1 types

2 Model = {Incident};

3 ObjIdx = int [-1..1];

4 ObjCnt = int [0..2];

5 IncidentState = {IncidentGlobal, Submitted, Closed};

6 System = autocons system

7 |[

8 var

9 currentModel : Model = Incident;

10 IncidentObjCnt : ObjCnt = 0;

11 IncidentObjIdx : ObjIdx = -1;

12 Incident0State : IncidentState = IncidentGlobal;

13 Incident1State : IncidentState = IncidentGlobal;

14 actions

15 ctr IncidentCreateSubmitted =

16 requires currentModel = Incident and IncidentObjCnt = 0):

17 requires IncidentObjIdx = -1 :

18 IncidentObjIdx := IncidentObjCnt;

19 IncidentObjCnt := IncidentObjCnt + 1;

20 Incident0State := Submitted

21 end[]

22 ...

23 end;

24 ctr IncidentEditSubmitted =

25 requires currentModel = Incident :

26 requires IncidentObjIdx = 0 :

27 requires Incident0State = Submitted :

28 Incident0State := Submitted

29 end

30 end[]

31 ...

32 ...

33 ctr SelectIncident(i : ObjIdx) =

34 requires (i < IncidentObjCnt and i <> IncidentObjIdx and i >= 0) :

35 IndexIncident := i

36 end

37 do

38 IncidentCreateSubmitted() []

39 IncidentEditSubmitted() []

40 ...

41 var A : ObjIdx : SelectIncident(A)

42 od

43]|

44 system

45 System

Listing 6.5: OOAS for the incident manager module.

Observers can be used to specify coverage criteria for offline test-case generation for sys-
tems that have EFSMs to describe the system specifications [49]. Coverage criteria usually
consist of a list of items that need to be covered. This can be locations (states) or edges (transi-

Chapter 6. Integration of External Test-Case Generators 61

q0

target_loc=L

loc(L)

edge=E

edge_cov(E)

q0

(i) (ii)

Figure 6.11: Observer automata monitoring location and edge coverage.

tions) in an EFSM. The observer observes how an EFSM traverses its model and saves chosen
aspects of the execution. Observers were introduced by Blom et al. [24] and the following
definition was introduced in their work. Formally an observer obs is defined as a 4-tuple
(Q, q0, Q f , B) where

Q is a finite set of observer locations,
qo is the initial observer location,
Q f ✓ Q is a set of accepting observer locations, whose names are the corresponding
coverage items,
B is a set of edges, each of the form q b�! q0, where q, q0 2 Q.

b is a predicate that can depend on the input event received by the SUT, the mapping from
state variables of an EFSM to their values after performing the current computation step, and
the transition in the EFSM that is executed in response to the current input event.

In the case study, two observer automata were implemented. One for location (state)
coverage and another one for edge (transition) coverage. In the context of observer automata
and its graph-based terminology we use the locations and edges to refer to the EFSM’s states
and transitions. The observer automata are shown in Figure 6.11.

The initial location q0 has an edge to itself with b = true. The • symbol represents the
initial location with such a self-loop. Furthermore, each q f 2 Q f has an edge to itself with
b = true. This is represented by the } symbol. The self-loops are added to allow the observer
to non-deterministically start monitoring the EFSM and to remain in any of the accepting
observer locations. The state-coverage observer (i) has a parameterized accepting location
loc(L), where L is a parameter that ranges over all locations in the EFSM. The location loc(L)
is entered when the EFSM enters all locations l 2 L. The transition-coverage observer (ii)
works in a similar way where E is the set of all edges from the EFSM. The accepting state is
entered as soon as all edges of the EFSM are covered.

The language of observer automata is rich and contains more syntax than what is needed
in this thesis. Predicates that make use of variable definitions and variable usages are also
included. However, the model exploration of model-based mutation testing is rather expen-
sive. Therefore, only simple observer automata have been implemented in combination with
MoMuT. Note that the features of the observer automata language can be exploited more ex-
haustively with external test-sequence generators that are able to explore their models faster.

The observers are added to the OOAS model by extending the models described in the
previous section. For each parameter of the coverage items, a boolean variable has to be
added to the VAR block. For the transition observer a variable is created for each transition
and added to the var block:

VAR [{Variable(ei, boolean, true) | ei 2 E}.

Furthermore, those variables have to be set if an edge has been covered. The AST is

62 Chapter 6. Integration of External Test-Case Generators

1 types

2 ...

3 System = autocons system

4 |[

5 var

6 currentModel : Model = Incident;

7 IncidentCreateSubmittedCrossed : bool = false;

8 IncidentEditSubmittedCrossed : bool = false;

9 ...

10 actions

11 ctr IncidentCreateSubmitted =

12 requires currentModel = Incident and IncidentObjCnt = 0):

13 requires IncidentObjIdx = -1 :

14 ...

15 IncidentCreateSubmitted := true

16 end[]

17 ...

18 end;

19 ...

20 obs TransitionCoverageGoalReached =

21 requires (IncidentCreateSubmittedCrossed = true and

22 IncidentEditSubmittedCrossed and ...) :

23 skip;

24 end

25 do

26 IncidentCreateSubmitted() []

27 ...

28 TransitionCoverageGoalReached()

29 od

30]|

31 system

32 System

Listing 6.6: Extended OOAS with a transition-coverage observer.

traversed and whenever an edge is crossed a statement setting the corresponding variable
to true is added to the AST. Last, the accepting location edge cov(E) has to be added to the
model. The accepting location is modeled as an output action and added to the ACT block:

ACT [{(0TransitionCoverageGoalReached0, ∆,0
^

ei2E
ei = true0, (0skip;0),0 output0)}.

If all edges have been visited (all variables have been set to true) the action is enabled. The
action does not contain any statements and solely skips its execution. Listing 6.6 shows the

The state coverage observer works in a similar manner. For each state, a variable is created
and an output action is added to the AST that is enabled when all states are visited.

6.3.3 Test-Sequence Integration

In the previous section, we added output interactions to the OOAS model. This makes it
eligible for test-case generation. MoMuT supports random test-case generation. However,

Chapter 6. Integration of External Test-Case Generators 63

 ctr IncidentCreateSubmitted

 ctr IncidentCreateSubmitted

 ctr IncidentEditSubmitted

 ctr SelectIncident(0)

 ctr IncidentCloseClosed

 ctr IncidentCloseClosed

 obs TransitionCoverageGoalReached

 pass

Figure 6.12: Abstract test-case using an transition observer for the incident manager.

this was only done to confirm that the generated model can produce the same test sequences
as the model generated by FsCheck. Since FsCheck already provides a random test-case
generation, generating random test-cases with MoMuT would only compare the two random
algorithms of the tools on the models.

The second test-case generation strategy implements a conformance check between a spec-
ification and a mutated version. The model from the last section serves as the specification
for the MoMuT back end. Since the mutation operators for the MoMuT version we used only
works on the level of the UML diagrams, mutation operators are specified by ourselves. We
used the symbolic back-end of MoMuT directly with one custom mutation operator. The back-
ends were explained in more detail in Chapter 4. While there exists a variety of possibilities
for mutation operators, we only tried two different mutation operators. One that modifies the
destination state and one that modifies the guard or in other words the starting state. Since
both mutation operators seemed to generate similar test-cases only the first mutation operator
was chosen for the case study. The mutator changes the destination state of a transition. In
Chapter 5 it was defined that a transition t of the EFSM has a destination state d 2 S. The
mutation operator exchanges d by the mutated destination state d0 where d0 2 S ^ d0 6= d. One
transition of the EFSM is randomly mutated using this mutation operator.

When MoMuT is executed using the specification and several mutants, MoMuT produces
abstract test-cases in case an error is propagated to an unspecified output action. A generated
abstract test-case in the Aldebaran format is shown

In Figure 6.12 we show an abstract test-case as a LTS. We used a transition observer and
mutated the destination state of the action IncidentEditSubmitted from Created instead of
Closed. The abstract test-case contains all possible transitions of the model, due to the added
observable which only triggers when all transitions have been crossed. With the sequence of
controllables in the test case, the mutated version will not be able to execute the action
IncidentEditWithVersionSubmitted as it is not allowed in the Closed state. We can never ob-
serve that all transitions are crossed. This different behavior is identified by MoMuT and,
therefore, the abstract test-case is generated.

Each controllable transition of the test case corresponds to a task of the REM. In order to
implement the sequence in FsCheck, we make use of the ExternalMachine described earlier in
this chapter. The implementation of the transformation process of the Aldebaran files to the

64 Chapter 6. Integration of External Test-Case Generators

1 public override Gen<Operation<IModule, ModelEFSM>> Generator(Model m, string name) {

2 var t = m.ActiveRuleEngineModel.Transitions[name];

3 var attGen = Generators.GenerateData(t.RequiredAttributes.Values.ToArray());

4

5 return attGen.Select(data => (Operation<IModule, ModelEFSM>)

6 new DynamicOperation(t.Name, data, NextState));

7 }

Listing 6.7: Generator for creating dynamic operations based on external machine argu-
ments

external machine is not explained in detail since it is rather straightforward. The explanation
is kept short. The important techniques for implementation were already explained in the
previous chapters.

The controllables in the sequence get parsed to one of the following three transition types:
Dynamic, Select and SelectREM. They can be parsed distinctively with their corresponding
attributes. The transition types are the operation arguments for the machine. Each of them
has a generator that will generate the corresponding operation. The generator for dynamic
operations is shown in Listing 6.7.

The needed arguments for the operation are the model and the name of the transition.
The model is created by parsing the REMs to EFSMs and using them in FsCheck. The name
of the transition is parsed from the controllables of the abstract test-case. The generators
for the Select and SelectREM generators is implemented similarly. Select receives an integer
attribute to create the operation while SelectREM receives a name to create its operation.
With an ExternalMachine using the data from Aldebaran files we successfully integrated test
sequences, which are created by MoMuT, into FsCheck.

65

7 Case Study: Testing a Web-Service Applica-
tion

The approach in this thesis was developed for testing a web-service application. The applica-
tion was provided by the industrial partner of the TRUCONF project, AVL.1 The tested system
is called AVL Testfactory Management Suite (TFMS) and is used in the automotive industry.2

The tool integrates and interacts with test-automation systems and other business systems
such as project-management systems, unit-under-test databases. The tool has three main
areas, resource management, data & information management, and workflow management.
These areas consist of many modules. Each of them is responsible for different functionality
such as managing test equipment, reporting issues, planning and preparation of test plans
and others.

Three modules were analyzed in depth in the study. The Incident Manager (ICM), the
Test-Equipment Manager (TEM) and the Unit-Under-Test Manager (UUT). Other modules
that were analyzed include the Test-Order Manager (TOM) and were used to further develop
the approach.

The ICM was chosen since it has the smallest EFSM of the tool and is, therefore, the easiest
to start implementing and presenting new approaches. The ICM served as an example in the
previous chapters. As the ICM is small, it was not further analyzed in the case study.

The TEM and the UUT are one of the bigger sized modules in terms of the EFSMs states,
tasks, and transitions. They were selected in order to validate the developed testing approach
and to show the viability and limits of the approach for more complex systems. The results
of the TEM and the UUT case study are presented in this chapter.

The evaluations in this study were performed with a Lenovo T450s notebook running
Windows 8.1 64-bit version. The CPU has 4 logical Intel i5 cores with 2.2GHz and 8 GB RAM.
The test cases for the SUT were run on a virtual machine with Windows Server 2008 R2 64-bit
version. We assigned 4GB RAM assigned to the machine.

7.1 Test-Equipment Manager

The REMs analyzed in this module are shown in Figure 7.1. The tests were focused on
dynamometers (dynos). The approach can be easily adapted for other equipment types as
well. The REMs are constructed similarly. We skip the required test data associated with
transitions. It can be seen that the REM for the test equipment has a number of tasks to
manage/edit the test equipment and also that these tasks lead to different states representing
the availability of the test equipment. Note that the models for this case study were more
complex than the figure might suggest because we had to consider several instances of the
equipment. Hence, we also added operations to switch between instances of this REM. Each
test equipment has a test-equipment type. The model of a test-equipment type is similar to
the model of a test equipment. The main function of the TEM module is the administration
of equipment. Equipment is grouped into base equipment types such as dynamometers,
sensors, testbeds, measurement devices, input/output modules and many others. Equipment
can be created, configured, edited, calibrated and maintained in this module. In the TEM, we
analyzed two REMs: Test equipment (TE) and test-equipment type (TET). TE and TET will
refer to the REMs while the written-out version refers to the objects.

1https://www.avl.com
2https://www.avl.com/tfms

https://www.avl.com
https://www.avl.com/tfms

66 Chapter 7. Case Study: Testing a Web-Service Application

TeRuleEngine_Dyno

TetRuleEngine_Dyno

Global

Global

Created

TetCreate

Available

TetCreate

TetEditGeneral
TetDuplicate
TetChangeState

TetEditGeneral

TetDuplicate

TetChangeState

Deleted

TetDelete

Invalid TetActivate

TetActivate

SelectREM

TetAdminEdit

TetDuplicate

BaseTypeEditTask
TetAdminEdit
TetDuplicate
TetPropagate

TetDelete

TetAdminEdit

TetAdminEdit

Created

CreateTestEquipment

Available

CreateTestEquipment

TeEditGeneral
TeChangeState
TeDuplicate

TeMultipleDuplicate
TeEditGeneral

TeChangeState

TeDuplicate

TePropagate

Deleted
TeDelete

Invalid

SelectREM

TeActivate
TeActivate

TeDuplicate

TeMultipleDuplicate

TeAdminEdit

TeMaintenance
TeMaintenanceAdminEdit

TeDuplicate
TeAdminEdit
TePropagate

TeDelete

Defect
MarkAsDefect

Mounted

TeMaintenance

TeMaintenanceAdminEdit

TeAdminEdit

TeAdminEdit

TeChangeState TeChangeState

TePropagate

TeDuplicate

TeMultipleDuplicate

TeMaintenance

TeMaintenanceAdminEdit

TeDuplicate

TePropagate

TeMaintenance
TeMaintenanceAdminEdit

Figure 7.1: EFSM for the rule-engine models of the Test-Equipment Manager module.

Model States Tasks Transitions Attributes
TestEquipmentType 4 (5) 8 (10) 16 (21) 35 (43)

TestEquipment 5 (7) 7 (13) 13 (39) 18 (23)
TestEquipmentManager 9 (12) 15 (23) 29 (60) 53 (66)

Table 7.1: Number of states, tasks and transitions in REMs of the TEM module

Table 7.1 shows how many states, tasks, transitions, and attributes of the two REMs were
tested. The model was only partly tested since some transitions and states were not fully
supported or not implemented because they were special cases. The numbers in the paren-
theses represent the total numbers including these untested items. TestEquipmentManager
is a model that represents both REMs, TestEquipmentType and TestEquipment. All edges in
the previous graph that share the same label are transitions of the same task. The number of
transitions can be calculated with the following summation formula that uses the REM syntax
from Section 5.1:

transitions = Â
s2AllStates

Â
t2s.possibleTasks

|t.possibleNextStates|

Each state has a set of possible next tasks where each of those tasks has a set of possible
next states. We count the number of elements of each of sets of possible next states. This is
denoted in the formula by summing up the cardinality of the finite possibleNextStates sets.

7.1.1 Found Issues

It is important to note that the case study was performed with test REMs, where less test effort
is spent than on productive REMs. Productive REMs, which are shipped to the customers,

Chapter 7. Case Study: Testing a Web-Service Application 67

are different ones and were not in the scope of this study. This section shows issues found
in the test REMs and shows the ability of the approach to detect these kinds of issues. If the
productive REMs contain similar types of errors they should be possible to find. The issues in
this section were already presented by Aichernig and Schumi [8]. All issues were found with
our approach where we integrated MoMuT into FsCheck but also with the regular FsCheck
approach.

The following two issues could be found with strings by utilizing our string generators,
which support the generation of strings with regular expressions.

1. Inconsistency regarding the use of tabs in names could be found. It was never planned
that the object names should support tabs. On some occasions these characters were
replaced with blanks, but not consistently. Blanks were still saved in the DB and only
replaced, when they were sent to the GUI. Therefore, two entries could be created that
were indistinguishable, because both a name containing a tab and a blank were pre-
sented in the same way by the SUT.

2. Another problem we could find was that the regular expressions for several names in
our REMs were insufficient. We assume that these regular expressions were designed
to prevent certain special characters and no blanks should be allowed at the end and
the beginning of the name string. However, the regular expressions were written so that
they allowed all non-white space characters at the beginning and the end of the string,
even characters that are not allowed in the middle of the string. We could observe this
issue when we tested the copy functionality, which duplicates an object and appends an
underline and a number to its name. When certain white-space characters were at the
end of the string, then the name was not valid anymore, after a copy operation. This
was because the special character moved from the end to the middle of the string, where
they were not allowed due to the regular expressions.

Additional issues could be found concerning misconfigurations in the REMs and unsup-
ported functionality of the provided test framework.

3. An issue was found with required attributes. In a particular task an attribute was re-
quired, but it could not be edited as it was not enabled for this task. Therefore, it was
not possible to complete this task, except the user returned to a previous task and edited
the attribute there.

4. We found a task that was not supported by the test framework. The task could be
triggered with the test framework but resulted in an exception. In the GUI the task could
be executed normally. Hence, we found a task that was not completely implemented in
the test framework and could not be tested automatically, because without support of
the test framework only a manual test via the GUI was possible.

7.1.2 Experiments

Experiment 1: To evaluate our approach we integrated MoMuT into FsCheck by using our in-
terface for external test-case generators described in the previous chapter. The first experiment
reports the exploration times of the MoMuT test-case generation process for different depths
of the ioco check. In order to do that we will first take a look at the test-case generation-process
of MoMuT.

In order to generate tests, certain parameters have to be set. The settings are shown in
Table 7.2. n is the maximum number of objects for each REM. m is the number of mutants
that are created. ioco is the maximum depth of the ioco check. re f is the maximum depth of
the refinement check which is explained in more detail in Section 4.3.2. If no error is found

68 Chapter 7. Case Study: Testing a Web-Service Application

Name Value
n 5

m 10

ioco 10

ref 20

Table 7.2: Configuration for MoMuT test-case generation

Model Strategy d2 d4 d6 d8 d10
time tc time tc time tc time tc time tc

TE States 3.60s 0 25.76s 4 50.47s 10 5.02m 9 1.56m 10

TE Tasks 9.01s 0 3.06m 0 54.06m 2 13.45h* - 213.63h* -
TET States 4.34s 0 38.10s 9 1.65m 8 11.54m 9 53.51m 9

TET Tasks 6.41s 0 2.58m 0 31.10m 0 8.56h* - 140.63h* -
TEM States 5.41s 0 1.13m 0 10.19m 0 7.00h 2 41.75h* -
TEM Tasks 26.78 0 8.52m 0 1.70h* - 23.01h* - 312.18h* -

Table 7.3: Exploration times of TEM REMs using MoMuT with observer automata.

within the maximum depths, no abstract test case will be generated. It was observed that the
runtime of the test generation-process is at least exponential to the ioco depth. The depth was
increased step by step until the process took too long or the depth of 10 was reached. Table 7.3
shows the exploration times for different models and observer strategies.

The models TE and TET refer to the REMs for test equipment and test-equipment types.
The TEM model combines the two REMs into a more complex model. We alter the models for
MoMuT with observers to reach coverage criteria. The column Strategy identifies the type of
generation-process via the coverage goal of the observer.

dn stands for the ioco depth which is set to a number n. For example, d10 shows the time
it took for the exploration if ioco is set to ten. For some strategies MoMuT could not generate
any test-cases given a certain ioco depth. Since the exploration times for higher depth values
were too long, it was not possible to generate test cases for all strategies. If the depth could
not be reached an estimation is given and the time value is marked with an asterisk (⇤). The
estimation is calculated using exponential regression. Under the assumption that our data
points follow an exponential model of form f (x) = ab⇤x, we estimate the parameters, a and b.
This means we can estimate the duration d by inserting a certain ioco depth into the formula
as x. For further information on curve fitting the interested reader may refer to Motulsky and
Christopoulos [80].

We can observe that the task strategies need more time exploring the model as the state
strategies. A higher depth is needed to find mutants. To reach the observable action in the
OOAS longer test sequences are generated in the task strategies since more observer items are
present there. This means that MoMuT needs to explore longer. In the TE with the States
strategy the d10 run needs less time than the d8 run as it is able to generate ten out of ten test
cases. If a mutant is killed and a test case is generated MoMuT does not need to continue
exploring the whole model and will continue finding the next mutant. This results in shorter
exploration times, as the exploration is aborted. On the contrary, if a mutant is not killed
MoMuT has to explore the model until d is reached. Since the exploration is rather expensive
the case study sticks to those two simple strategies as the ioco check can be performed within
a certain depth. Using more complex strategies such as a transition-coverage observer or
a combination of a state and task-coverage observer would require a higher depth values
and, therefore, longer exploration times. As expected, the bigger the model the longer the
exploration times and the fewer mutants can be found in time. When both REMs are combined

Chapter 7. Case Study: Testing a Web-Service Application 69

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TET State-Observer State Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TET State-Observer Task Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TET State-Observer Transition Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TE State-Observer Task Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TE State-Observer Transition Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TE State-Observer State Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TE Task-Observer State Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TE Task-Observer Task Coverage

MoMuT FsCheck

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

TE Task-Observer Transition Coverage

MoMuT FsCheck

Figure 7.2: Coverage per number of test cases for different models and observer strategies
for the TEM module.

exploration times are the longest and also produce the least test cases.
Experiment 2: In this experiment we will compare how adequate our approach and the

regular FsCheck approach cover the model. The model coverage is analyzed as follows. The
abstract test cases from the MoMuT generation process serve as a reference. For a comparison
of the coverage items the amount and length of test cases are controlled. The FsCheck test
run is set to the number and length of the MoMuT test-cases. In the following we will show
the coverage of the different strategies and models. For a strategy a test suite is generated
composed of x test cases of a fixed length. The length is four for the two state-coverage
observers and eight for the task-coverage observer. The number of test cases per suite is
plotted on the x-axis. On the y-axis the coverage of the model is plotted in percent. Each
graph contains two data series. One for the test cases generated with MoMuT and one for
the test cases generated with regular FsCheck. The analyzed coverage criteria are state, task
and transition coverage. The experiment is repeated 50 times for the FsCheck sequences and
the average value is plotted. Since the MoMuT generation used does not involve random
generation, it only needs to be performed once. Repeating the experiment multiple times
would lead to the same MoMuT sequences.

In Figure 7.2 the different models and observer strategies are shown for the TEM module.
For the state observer it can be seen that the state coverage is 100 percent with only one test
case for the MoMuT approach. This is expected and a validation that the state observer works
as intended. The task-observer strategy shows that state, as well as task coverage, is 100

percent for the MoMuT approach. In our models no unreachable states are included. This
means if all tasks are covered all states are covered as well. This is not evident on all models,
however, in our examples it is. In all strategies it can be observed that MoMuT covers the
model better for smaller test suites. For larger test suites both methods are able to cover most
of the model. The MoMuT sequences are also guaranteed to cover certain criteria with only
one test case based on the observer type. Since FsCheck relies on random testing no matter
how many test cases are generated, it can not be guaranteed that full coverage is achieved
with the test suite.

70 Chapter 7. Case Study: Testing a Web-Service Application

Issue FsCheck MoMuT
1 467.4 259

2 12.4 4.4
3 17.6 7.8
4 9 14.2

Table 7.4: Average number of operations needed to find an issue with a given test suite.

Experiment 3: We created two test suites and show how good they perform on finding
bugs in the system. We compare with how many operations each test suite is able to find the
issues that were listed. The first test suite is plain FsCheck and consists of eight test cases of
the length five. The second test suite is created through a mixed approach. We use MoMuT to
generate two random tests of the length five and in addition six test cases which were retrieved
by trying to kill 50 mutants using a state observer. The test suite consists of 39 operations. A
third test suite that uses a task observer would be an interesting addition. Unfortunately, a
test suite could not be generated. The model needed to find the issues would contain almost
all tasks of the TE, which is infeasible. The test-case generation was aborted after about 30

hours of exploration. All issues were contained in the TE. Therefore, the TET was not part of
this experiment.

Table 7.4 contains the number of operations that are needed on average to reproduce the
reported issue. The test suite was continuously executed until the issue was found. This
means that if the test suite could not find the error with the first execution we continued
executing. All experiments were repeated five times. It can be seen that only the first issue
was not found within one test suite run. The string generator needs to generate a tab which
is one of many possibilities. Therefore, the issue is triggered rarely. For the second issue
MoMuT performs way better since there is a state in which only the faulty task is enabled.
Every MoMuT test is able to reveal this issue. The third and fourth issue are tasks that are
available in multiple states. The task related to Issue 3 is generated more often by MoMuT
than the one related to Issue 4. From an abstract perspective both tasks seem similar. They
can be executed from a similar number of states and have a similar number of destination
states. There is no clear reason as to why MoMuT is faster in finding one issue but not the
other. It can be seen that the MoMuT test suite finds issues slightly faster than the FsCheck
one. The task-observer test-suite would be able to identify the Issues 3 and 4 even faster since
it is guaranteed that the related tasks would be apparent in each test sequence.

7.2 Unit-Under-Test Manager

The UUT is a module that enables test bed oriented administration of units under test. As in
the TEM the manager distinguishes between base types, regular types, and the instances of
these types. In addition, they have line definitions, however, they are not included in this case
study.

The base types consist of chassis, components, engines and others. Again, the tests only
focus on one of the base types, engines. The instances can be created, edited, changed and
maintained in this manager. In the UUT, we analyzed two REMs: Unit-under-test instance
(UUTInstance) and unit-under-test type (UUTType). UUTInstance and UUTType will refer
to the REMs while the written-out versions refer to the objects.

The modules analyzed in this study are shown in Figure 7.3.
Table 7.5 shows how many states, tasks, transitions and attributes were tested of the two

REMs. The model was only partly tested since some transitions and states were not fully sup-
ported or not implemented, because they were special cases. The numbers in the parentheses

Chapter 7. Case Study: Testing a Web-Service Application 71

UutTypeRuleEngine_Engine

UutTypeRuleEngine_Engine

Global

Global

CreatedCreateUutType

Available

CreateUutType

SelectREM

ChangeStateUutType
EditUutType

DuplicateUutType

ChangeStateUutType

EditUutType

DuplicateUutType

Deleted

DeleteUutType

DuplicateUutType

AdminEditUutType

DuplicateUutType
AdminEditUutType
BaseTypeEditTask
PropagateUutType

DeleteUutType
Invalid

ActivateUutType
ActivateUutType

DeleteUutType

Created

CreateUutInstance

Available

CreateUutInstance

ChangeStateUutInstance
DuplicateUutInstance
EditUutInstance

MultipleDuplicateUutInstance
ChangeStateUutInstance

DuplicateUutInstance

EditUutInstance

PropagateUutInstance

DeletedDeleteUutInstance

Defect

MarkAsDefect

DuplicateUutInstance

AdminEditUutInstance

MultipleDuplicateUutInstance

DuplicateUutInstance
AdminEditUutInstance
MaintainUutInstance

AdminEditMaintainUutInstance
PropagateUutInstance
MountUutInstance
RigUnrigUutInstance

DeleteUutInstance

MarkAsDefect

MaintainUutInstance

AdminEditMaintainUutInstance

Invalid
ActivateUutInstance

ActivateUutInstance
DeleteUutInstance

Mounted

SelectREM

DuplicateUutInstance

MultipleDuplicateUutInstance

DuplicateUutInstance

PropagateUutInstance

DisMountUutInstance

ChangeStateUutInstance

ChangeStateUutInstance

PropagateUutInstance

Figure 7.3: EFSM for the rule-engine models of the Unit-Under-Test Manager module.

Model States Tasks Transitions Attributes
UUTType 3 (4) 6 (8) 12 (16) 25 (45)

UUTInstance 4 (5) 7 (13) 17 (29) 16 (28)
UUT 7 (9) 13 (21) 29 (45) 41 (73)

Table 7.5: Number of states, tasks and transitions in REMs of the UUT module

represent the total numbers including these untested items. UUT is a model that represents
both REMs, UUTType and UUTInstance. All edges in the previous graph that share the same
label are transitions of the same task.

7.2.1 Found Issues

As described in more detail in the TEM case study, it is important to note that the case study
was performed with test REMs, where less test effort is spent than on productive REMs.
Productive REMs were not in the scope of this study. As in the TEM module this module had
similar issues regarding the regular expressions in name attributes.

The following issues found are in regard to minor misconfiguration of attribute parameters
in the REM or to unexpected design choices which can be adjusted in the test framework.

1. An attribute was marked as optional and disabled in a task. The task could not be
completed with the attribute missing. By supplying the attribute an error occurred that
states that the attribute is not enabled and therefore not allowed. Enabling the attribute
in the REM should allow the task to complete properly. This is a minor inconsistency in
the rule engine. The task is redundant, since other tasks already implement the behavior.

2. For a UUT a parent type has to be specified via an attribute. UUTs cannot have a base
type as their parent, only regular types are allowed. The query to find available parent
types, however, returns all types, including base types and types from other sub-types.
For example, if the selected element is an engine the parent query may return a chassis
as a parent. Narrowing down the query to regular types and the corresponding sub-type

72 Chapter 7. Case Study: Testing a Web-Service Application

circumvents this behavior. The change is cosmetic and not a failure of the system.

Additional issues could be found regarding state transitions. The REM was not coherent
with the SUT in some states. Most of these issues could be fixed by a reconfiguration of
the REM. Usually, the implementation uses the REM configuration to perform its transitions.
In some special cases the REM configuration is ignored and overwritten hard-coded in the
implementation. The found issues are all related to a discrepancy between REM and imple-
mentation. The implementation works as expected while the test REM is not implemented
cleanly.

3. A certain task is used by administrators to pass changes that were done beforehand
by another explicit task. The task is possible to be performed in two different states,
however, only one next state is allowed in the REM. After performing the task the UUT
remains in its current state. The rule engine is overruled by the implementation which
forces the behavior to not change the state.

4. Two other tasks were found that had two possible next states. One of the possible next
states could not be set. In one task this resulted in an exception in the test framework,
in the other task the task was executed but the state of the UUT was not altered. Again,
the rule engine is overruled by the implementation which does not allow a change of
state.

5. One task had a single next state. The UUTs changed into a different state and the SUT
did not propagate any error. When the REM was adjusted to conform to this behavior
and the task was executed the SUT did propagate an error stating that the selected next
state is not valid. The error propagates due to a configuration issue of a non-productive
REM.

7.2.2 Experiments

The same experiments as for the TEM module were conducted for the UUT module. For an ex-
planation on how the experiments are performed please refer to Section 7.1. Only adjustments
and result interpretations will be presented here since the description of the experiments was
already given.

Experiment 1: Table 7.6 shows the exploration times for different models and observer
strategies. Again, it can be seen that smaller modules need less time to explore and that
the tasks strategy is more complex than the states strategy. We can see that the exploration
time can be very low if all mutants are found. This can be observed in the states strategy
of the UUTType. d8 terminates after only 32.61 seconds even though the estimated time is
5.17 minutes. Since the UUT module is a bit smaller than the TEM module, we were able to
retrieve meaningful test cases for the states strategy of the whole model. In conclusion, there
were no surprising findings in this experiment. The results confirm the observed behavior of
the TEM module.

Experiment 2:
In Figure 7.4 the different models and observer strategies for the UUT module are shown.

For the UUTType the state observer did not perform very well. This can be seen in the the
first row of graphs. The first row also shows a new strategy with the MoMuT kill-check. This
will be explained shortly after the other strategies are discussed. The task-observer strategy
performs as expected, however, the difference is not as apparent as in the TEM module.
The UUTType is less complex resulting in FsCheck being able to cover most parts of the
model with an adequate amount of operations. The smaller the model is, the less superior
the MoMuT approach is in terms of model coverage. The state-observer strategy for the
UUTInstance performed slightly better than plain FsCheck.

Chapter 7. Case Study: Testing a Web-Service Application 73

Model Strategy d2 d4 d6 d8 d10
time tc time tc time tc time tc time tc

UUTType States 9.62s 0 43.43s 7 2.91m 6 32.61s 10 9.75m 8

UUTType Tasks 19.16s 0 5.36m 0 1.07h 0 11.69h* - 145.1h* -
UUTInstance States 9.75s 0 88.29s 9 7.38m 8 18.58m 9 16.87m 8

UUTInstance Tasks 10.86s 0 5.35m 0 5.16h 0 120.07h* - 3648h* -
UUT States 12.18s 0 1.40m 0 35.97m 1 15.02h 7 122.4h* -
UUT Tasks 20.61s 0 5.79m 0 - - -

Table 7.6: Exploration times of UUT REMs using MoMuT with observer automata.

Issue FsCheck MoMuT
1 10 5.6
2 2.6 2

3 8.6 7.8
4 25.6 26.4
5 23 12.8

Table 7.7: Average number of operations needed to find an issue with a given test suite.

Due to the smaller size of the models, it was possible to create sequences that cover both
REMs at the same time. However, the results were not convincing since the MoMuT sequences
were performing worse than the FsCheck ones. The reason that MoMuT is not able to cover
a big part of the model is that the UUTType tends to generate the same sequences over and
over again. Since the model is so small there are only a few points in it where discrepancies
in model coverage can be observed. Creating the same sequences is definitely not useful.
MoMuT supports a kill check. The first row of graphs in Figure 7.4 show that enabling the
kill check results in less test-cases but still higher model coverage. When kill check is enabled
MoMuT first tries to kill the mutant with the already available test sequences and only if it
cannot kill the mutant, it will try to create a new sequence. With this technique no duplicate
sequences will be generated and the size of the test suite is kept smaller. The UUTType with
state observer was reevaluated using the kill check. For 50 mutants a test suite of 6 sequences
was created that was able to kill 47 mutants and 3 mutations were identified as ioco equivalent.
This strategy for test-suite creation performs significantly better than the plain FsCheck and
than MoMuT without a kill check. With only six test cases 100 percent task coverage was
achieved.

Experiment 2:
The first issue was contained in the UUTType. We used MoMuT with a state-coverage

observer to find the first issue. No random test cases were added since they would already
kill most of the possible mutation resulting in a test suite of merely two test cases. The
generated test suite consists of five sequences with three operations each. The FsCheck test
suite contains the same amount of sequences and operations. The other issues were part
of the UUTInstance. Again, MoMuT with a state-coverage observer was used. However,
two random tests of length five were added. Together with nine mutation-based tests, this
results in a test suite of 44 test cases. Again, FsCheck uses the same number of test cases and
operations.

Table 7.7 shows that the MoMuT generated test suites usually find the issues faster. For the
UUTType we managed to generate a test suite with a task-coverage observer. The reported
issue was found similarly fast as with state-coverage observers, being found after an average
of 6.4 operations. For the UUTInstance we were not able to generate a suite using the task-
coverage observer. We aborted the generation process after about 24 hours. The Issues 3-5

74 Chapter 7. Case Study: Testing a Web-Service Application

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTType State-Observer
Task Coverage

FsCheck MoMuT with Kill Check

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTType State-Observer
Transition Coverage

FsCheck MoMuT with Kill Check

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7 8 9

UUTType Task-Observer
State Coverage

FsCheck MoMuT

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTType Task-Observer
Task Coverage

FsCheck MoMuT

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTType Task-Observer
Transition Coverage

FsCheck MoMuT

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTInstance State-Observer
State Coverage

FsCheck MoMuT

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTInstance State-Observer
Task Coverage

FsCheck MoMuT

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

UUTInstance State-Observer
Transition Coverage

FsCheck MoMuT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9

UUT State-Observer State Coverage

FsCheck MoMuT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9

UUT State-Observer Task Coverage

FsCheck MoMuT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9

UUT State-Observer Transition Coverage

FsCheck MoMuT

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9

UUTType State-Observer
State Coverage

FsCheck MoMuT with Kill Check

Figure 7.4: Coverage per number of test cases for different models and observer strategies
for the UUT module.

would be found with a single test sequence using a task-coverage observer since they are all
triggered as soon as a specific task is executed. All of the reported issues of the UUT module
are of simple nature and can be found easily. Any test suite that covers all the respective tasks
would be able to find the issues. One of the strengths of our approach is that MoMuT finds
the issues faster. MoMuT covers a big part of the model with very few test cases. This makes
it possible to reveal issues that are straightforward to find with few operations.

7.3 Summary and Outcome

The experiments conducted in this chapter have shown that it can be useful to implement an
external test-case generator into a PBT tool. We integrated MoMuT as an external genera-
tor, but it is possible to include other test-case generators as well. One of the most notable
differences between the MoMuT method and the plain FsCheck method is the difference in
computation times. The test-suite generation-time for MoMuT is very high. It can take several
minutes to hours to generate useful sequences. With bigger models the problem would be-
come in-feasible to explore. This is a known limitation of the approach. The random strategy
of FsCheck can generate sequences of the same length within seconds. Since our MoMuT ap-
proach integrates observer automata we can guarantee that a single test case is able to fulfill
certain coverage criteria. A test suite that covers all states or all tasks can be guaranteed with
this approach. The test suites generated with MoMuT cover more of the model with fewer
test cases as compared to plain FsCheck. This advantage becomes neglectable as soon as the
amount and length of test cases is increased. It is evident that a smaller test suite will need

Chapter 7. Case Study: Testing a Web-Service Application 75

less execution time. Therefore, it makes sense to optimize for a small test suite if the execution
time is expensive. For regression testing the MoMuT sequences can be useful since they are
short and cover most parts of the model with little execution time. In addition, it is possible
to create test cases that are guaranteed to cover particular parts of the model with observer
automata.

The benefits and drawbacks of model-based mutation testing were also discussed by Aich-
ernig et al. [3]. The suggested strategy initializes a test suite with randomly generated test
cases. Then, this test suite is run to detect mutants and in case they cannot be killed mutation-
based test cases are generated. In this thesis we see that solely relying on mutation-based
test cases is insufficient. The models are too big to create a large set of meaningful test cases.
Selecting a generation strategy or an appropriate external generator is a non-trivial problem
and needs careful analysis. This is coherent with the observations of the authors. The experi-
mental results suggest that mutation-based tests can be more practical for smaller test suites,
regression testing or if the execution of test cases is expensive. The regular FsCheck approach,
relying on random testing, already provides a very profound basis for creating test sequences.
Implementing an external generator is always connected to additional costs and the test-case
generation time of MoMuT is very high. If the execution time of running tests is low it is most
likely more efficient to generate regular sequences with FsCheck.

76

8 Conclusion

8.1 Summary

This work presented two testing approaches and combined them. The first is an automatic
test-case generation approach for business-rule models and tested a web-service application
from AVL called test factory management suite. This initial approach uses a property-based
testing (PBT) tool for model-based testing (MBT). The second integrates an external test-case
generator into a PBT tool to combine the features of two test-case generation strategies. Both
approaches are written in C# and use the PBT tool FsCheck. The second approach uses the
model-based mutation testing-tool MoMuT as an external generator.

We have presented a way to derive extended finite-state machines (EFSM) from rule en-
gines and integrate them into a PBT tool FsCheck as input models. It was formally explained
how the translation works. MBT with FsCheck was explained with the example of a simple
bank account system. Later it was discussed in detail how the EFSM is converted into an
object representation that is interpreted by FsCheck as a specification.

Then, FsCheck automatically derives operation sequences from this specification and ex-
ecutes them on the system-under-test (SUT). Operations need some additional data to be
executed. This data is expressed by attributes. They contain the information needed for the
operation, such as the name of an item that will be created. They usually have a data type and
constrains, such as the length of the name. We also generated this attribute data by deriving
generators from the rule-engine models. Data types can range from simple to more complex
types like strings, objects, references and files. Attributes also support different constraints
such as regular expressions for strings, minimum and maximum of numeric values or file
extensions.

However, this approach shows some lack of control over the creation of operation se-
quences. In our case, we wanted to construct test sequences with a different generation strat-
egy in order to focus on other test goals. In order to achieve this flexibility an interface was
created to supply a PBT tool with pre-defined operation sequences. We discussed the archi-
tecture of our implementation and illustrated the integration method with a bank account
example and an external generator based on regular expressions.

In order to test the web-service application from AVL, MoMuT was chosen as an external
generator. MoMuT represents its specifications and mutants as object-oriented action systems
(OOAS). We have formally shown the translation process from EFSMs to OOAS specifications.
Additionally, we introduced how to implement observer automata into the OOAS to fulfill
coverage requirements. With the example of a bank account we have shown how MoMuT
generates abstract test-cases. The external generator interface presented in this thesis allows us
to combine the two testing strategies and embed MoMuT generated sequences into FsCheck.
This lets us create a test suite that focuses on fulfilling certain coverage criteria.

This work also covered an application of our new approach which shows the applicability
of our test sequence generation strategy in the course of a case study. The case study focuses
on comparing different properties between two approaches: The plain FsCheck approach,
which was described first in this section and one that integrates MoMuT as an external test-
case generator. The experiments conducted in this case study have shown that it can be useful
to integrate an external test-case generator into a PBT tool. The conclusions that can be drawn
from the case study will be discussed in the following section.

Chapter 8. Conclusion 77

8.2 Discussion

One of the main contributions of this thesis is the implementation of external test-sequence
generators into a PBT tool. The developed approach provides an interface extension to
FsCheck. The main advantage of our approach is the flexibility that the interface provides. It
is obviously still possible to use the tool to generate each operation in the test cases discon-
nected from other operations. However, with our approach we give the possibility to form
new relations in the test-sequence generation-process. While there may exist many more, we
have shown two useful applications of our interface. We created a replay mechanism that
allows us to save and replay MBT test cases which have more control and is more robust to
changes than setting the random seed before executing the test cases again.

We implemented observer automata into the external generator MoMuT to satisfy certain
coverage criteria. The main advantage of this approach is that we can guarantee that one test
case alone is able to fulfill coverage criteria on the model level. However, the exploration times
in our study of MoMuT were at least exponential in relation to the depth of the conformance
check. It can take several minutes to hours to generate useful sequences, hence it becomes
infeasible for bigger models. This is a known limitation of the approach. In comparison,
FsCheck can generate a large number of test cases within one second. It is evident that a
smaller test suite will need less execution time. Therefore, it makes sense to optimize for a
small test suite if the test-execution time is expensive. The test suites generated with MoMuT
cover more of the model with fewer test cases as compared to plain FsCheck. The short
MoMuT sequences cover most parts of the model and are therefore well suited for regression
testing. However, if the execution on the SUT is cheap it is likely better to implement the plain
version instead of paying the expensive costs of test-sequence generation.

There is definitely not one right way to create test sequences. An appropriate approach
has to be chosen for each problem. We have provided a solution that is able to combine testing
techniques in order to tackle deficits of the individual tools. At the very least we provided
a framework in which we can choose the trade-off between computation and execution time
and adjust it according to the system and its specific needs.

8.2.1 Concluding Remarks

In conclusion, the two main goals set for this thesis have been reached:

1. Automatically creating models for MBT and including them into the software develop-
ment process. We derived our PBT models from the system’s rule engines and were able
to automatize the test generation-process.

2. The integration of external test-case generation-strategies into a PBT tool to gain better
control of the means test sequences are generated. This has been achieved by imple-
menting a model-based mutation testing tool MoMuT into FsCheck.

As a result of successfully reaching the set goals, the key parts of this thesis are published
as a paper: Property-Based Testing with External Test-Case Generators [7]. It was presented
at the 13th Workshop on Advances in Model Based Testing (AMOST 2017)1 in Tokyo, Japan
on 17 March 2016.

1http://a-most17.zen-tools.com/

http://a-most17.zen-tools.com/

78 Chapter 8. Conclusion

8.3 Related Work

PBT has gained a lot of attention over the last years. Therefore, it is only natural that a lot of
research has been conducted in this field. However, the survey of Dias Neto et al. [39] shows
that only a small fraction of research papers have used EFSMs as their model representation.
Most of them are based on UML. There exist a variety of approaches that present a combina-
tion of MBT and PBT to generate test sequences. The most similar approaches to this thesis
are described in this section.

Hughes et al. [53] presented an approach that utilizes QuickCheck that adapts random
test-case generation in order to avoid rediscovering the same type of bugs. The approach they
presented stores a set of bugs by saving the minimum counterexample to find this type of bug.
This information is then analyzed to create sequences that do not contain the already saved
sequences. The approach is similar in a way that it utilizes feedback from the test sequences in
order to optimize the test-case generation-process. The main difference is that their approach
focuses on a specific technique to adapt the test-case generation.

An approach to generate test sequences that cover business rules was presented by Jensen
et al. [58]. Business rules are translated into logical formulae and a constraint solver is used
to generate the test sequences. This work is similar in a way that test sequences are generated
from business rules and that they use a constraint solver for this. In this thesis a constraint
solver is used to generate the abstract test-cases provided by FsCheck. While the work is
described in a way that it can be interpreted as a variant of MBT, they present their work in
a business rule language. Our technique focuses more on translating the business rules into a
model and providing more options for the test sequence.

The work of Jensen et al. [59] combines QuickCheck with a fault injection tool. The created
testing platform is used to run a quad-copter simulator in order to improve the collision-
avoidance mechanism. They inject faults into the simulator and verify the property that the
copters do not collide. Similar to the work in this thesis they inject faults in order to acquire
test sequences. In the work the model is not created automatically and they focus more on how
to use the knowledge of found bugs in order to improve the collision-avoidance mechanism.
In comparison to this thesis, they focus more on automating the approach and acquiring test
sequences in a different manner, rather than improving the SUT based on the injected faults.

A framework to test web-services with the PBT tool PropEr for Erlang was presented by
Lampropoulos and Sagonas [68]. They automatically read the WSDL specification of a web-
service to invoke the operations of the web-service with random input. Similar to this work
they used data types, but only a few constraints for the data. They implemented automated
properties that are not satisfied in case the parsing of the SOAP response encounters an error.
In comparison to this thesis they do not use state machines to build their models and other
properties have to be implemented by the user.

Francisco et al. [43] presented another similar approach. The framework tests web-services
by automatically deriving QuickCheck models from the web-service’s WSDL description and
OCL semantic constraints. They show how to test stateless and stateful web-services by deriv-
ing respective models. In comparison to this thesis their generators do not consider constraints
for the data they added the OCL semantic constraints manually. QuickCheck generated the
test sequences but unlike in this thesis they did not exploit other test sequence generation
strategies.

To the best of our knowledge, we could not find any other work that derives PBT models
to automatically test a system and decouples the test-sequence generation-process from the
PBT tool giving more control over the generation process.

Chapter 8. Conclusion 79

8.4 Future Work

In the following, further extensions or adaptions of the presented approach are discussed.
This should provide information and motivation to possible research paths.

Additional Case Studies: Chapter 7 tries to compare the regular PBT approach with one that
combines FsCheck with MoMuT as an external generator. As stated before, the exploration
times of MoMuT were quite high. In the scope of the thesis it was not possible to test more
parts of the system or to repeat the measurements more often. It would be interesting if the
conclusions we drew from the case study also hold for other modules and to increase our
confidence by repeating the measurements. It is also interesting how the approach can be
embedded into other systems and to find out the limits of our approach. Of course there
several other possibilities for further analysis.

Different Models for MoMuT: It could be seen that the time MoMuT needs to explore its
models were large. Therefore, we were not able to create complex observer automata to reach
different test goals. Using elaborate observer automata could lead to a different type of test
sequences. Also the approach would be more practical if the models are explored faster. The
models from this thesis were rather complex and more features of MoMuT could be exploited
if it is executed on a more trivial model representation. It would be worthwhile to see what is
achievable if the exploration times are reduced.

Negative Testing: In this thesis we derived sequences and data from rule-engine models.
We created a model to verify that for a given input our model works the same as the system.
This was done for sequences that should be allowed and data that is within its limits. This
tests the response of the system for normal parameters. The system can also be deliberately
fed with wrong data or wrong interactions to determine if the system performs error handling
for unexpected input. For example, this can be achieved by inverting the value range of data
types. This is a trivial problem for numeric types and could test against integer overflows.
However, for more complex types such as strings with regular-expression constraints this is a
challenging task worth researching.

External Test-Case Generators: Implementing new external test-case generators is probably
the most obvious extension of this research. This should not only be seen as an extension
of testing web-services from rule-engine models but can also be applied in entirely different
fields. We already presented a generator for replaying test sequences and a regular-expression
based generator as examples. It is also possible to implement user heuristics into the genera-
tion process. In our case study we have used MoMuT to create test sequences that propagate
differences in the coverage of a model and a mutant. However, a generator that solely focuses
on coverage criteria should therefore be faster. This would be an interesting addition. With
imagination it should be achievable to come up with many variations as to what an external
test-case generator might be. There are many promising possibilities yet to be analyzed.

80

Bibliography

[1] Allen T. Acree, Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Freder-
ick G. Sayward. Mutation Analysis. Tech. rep. Georgia Institue of Technology - Atlanta
School Of Information and Computer Science, 1979 (cit. on p. 9).

[2] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn. “UML
in action: A Two-Layered Interpretation for Testing”. In: ACM SIGSOFT Software Engi-
neering Notes 36.1 (2011), pp. 1–8. doi: 10.1145/1921532.1921559 (cit. on p. 30).

[3] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert
Schlick, and Stefan Tiran. “Killing strategies for Model-Based Mutation Testing”. In:
Software Testing, Verification and Reliability 25.8 (2015), pp. 716–748. doi: 10.1002/stvr.
1522 (cit. on pp. 27, 75).

[4] Bernhard K. Aichernig and Elisabeth Jöbstl. “Efficient Refinement Checking for Model-
Based Mutation Testing”. In: 2012 12th International Conference on Quality Software, Xi’an,
Shaanxi, China, August 27-29, 2012. Ed. by Antony Tang and Henry Muccini. IEEE, 2012,
pp. 21–30. doi: 10.1109/QSIC.2012.58 (cit. on p. 33).

[5] Bernhard K. Aichernig, Elisabeth Jöbstl, and Martin Tappler. “Does This Fault Lead
to Failure? Combining Refinement and Input-Output Conformance Checking in Fault-
Oriented Test-Case Generation”. In: Journal of Logical and Algebraic Methods in Program-
ming 85.5 (2016), pp. 806–823. doi: 10.1016/j.jlamp.2016.02.002 (cit. on p. 32).

[6] Bernhard K. Aichernig, Elisabeth Jöbstl, and Stefan Tiran. “Model-Based Mutation Test-
ing via Symbolic Refinement Checking”. In: Science of Computer Programming 97 (2015),
pp. 383–404. doi: 10.1016/j.scico.2014.05.004 (cit. on p. 33).

[7] Bernhard K. Aichernig, Silvio Marcovic, and Richard Schumi. “Property-Based Testing
with External Test-Case Generators”. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March
13-17, 2017. IEEE Computer Society, 2017, pp. 337–346. doi: 10.1109/ICSTW.2017.62
(cit. on pp. 3, 77).

[8] Bernhard K. Aichernig and Richard Schumi. “Property-Based Testing of Web Services
by Deriving Properties from Business-Rule Models”. In: Software and Systems Modeling
(2017). submitted (cit. on pp. 40–42, 67).

[9] Bernhard K. Aichernig and Richard Schumi. “Property-Based Testing with FsCheck by
Deriving Properties from Business Rule Models”. In: Ninth IEEE International Conference
on Software Testing, Verification and Validation Workshops, ICST Workshops 2016, Chicago,
IL, USA, April 11-15, 2016. IEEE Computer Society, 2016, pp. 219–228. doi: 10.1109/
ICSTW.2016.24 (cit. on pp. 1–3, 35–37).

[10] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and
Atif M. Memon. “MobiGUITAR: Automated Model-Based Testing of Mobile Apps”. In:
IEEE Software 32.5 (2015), pp. 53–59. doi: 10.1109/MS.2014.55 (cit. on p. 14).

[11] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. “An Or-
chestrated Survey of Methodologies for Automated Software Test Case Generation”.
In: Journal of Systems and Software 86.8 (2013), pp. 1978–2001. doi: 10.1016/j.jss.
2013.02.061 (cit. on p. 1).

http://dx.doi.org/10.1145/1921532.1921559
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1002/stvr.1522
http://dx.doi.org/10.1109/QSIC.2012.58
http://dx.doi.org/10.1016/j.jlamp.2016.02.002
http://dx.doi.org/10.1016/j.scico.2014.05.004
http://dx.doi.org/10.1109/ICSTW.2017.62
http://dx.doi.org/10.1109/ICSTW.2016.24
http://dx.doi.org/10.1109/ICSTW.2016.24
http://dx.doi.org/10.1109/MS.2014.55
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1016/j.jss.2013.02.061

Bibliography 81

[12] James H. Andrews, Lionel C. Briand, and Yvan Labiche. “Is Mutation an Appropriate
Tool for Testing Experiments?” In: 27th International Conference on Software Engineering
(ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. Ed. by Gruia-Catalin Roman,
William G. Griswold, and Bashar Nuseibeh. ACM, 2005, pp. 402–411. doi: 10.1145/
1062455.1062530 (cit. on p. 13).

[13] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, and Satish Thatte. Business
Process Execution Language for Web Services. 2003 (cit. on p. 13).

[14] Assaf Arkin. “Business Process Modeling Language”. In: Business Process Modeling Ini-
tiative (2003) (cit. on p. 13).

[15] Ali Arsanjani. “Rule Pattern Language 2001: A Pattern Language for Adaptive Man-
ners and Scalable Business Rule Design and Construction”. In: TOOLS USA 2001: Soft-
ware Technologies for the Age of the Internet, 39th International Conference & Exhibition,
Santa Barbara, CA, USA, July 29 - August 3, 2001. IEEE Computer Society, 2001, pp. 370–
376. doi: 10.1109/TOOLS.2001.10046 (cit. on p. 12).

[16] Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. “Testing Telecoms
Software with QuviQ Quickcheck”. In: Proceedings of the 2006 ACM SIGPLAN Workshop
on Erlang, Portland, Oregon, USA, September 16, 2006. Ed. by Marc Feeley and Philip W.
Trinder. ACM, 2006, pp. 2–10. doi: 10.1145/1159789.1159792 (cit. on p. 12).

[17] Ralph-Johan Back and Reino Kurki-Suonio. “Decentralization of Process Nets with
Centralized Control”. In: Distributed Computing 3.2 (1989), pp. 73–87. doi: 10.1007/
BF01558665 (cit. on p. 28).

[18] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with
Types. Perspectives in logic. Cambridge University Press, 2013. url: http://www.
cambridge.org/de/academic/subjects/mathematics/logic-categories-and-
sets/lambda-calculus-types (cit. on p. 15).

[19] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. “The
Oracle Problem in Software Testing: A Survey”. In: IEEE Transactions on Software En-
gineering 41.5 (2015), pp. 507–525. doi: 10.1109/TSE.2014.2372785. url: https:
//doi.org/10.1109/TSE.2014.2372785 (cit. on p. 7).

[20] Antonia Bertolino. “Software Testing Research: Achievements, Challenges, Dreams”.
In: International Conference on Software Engineering, ISCE 2007, Workshop on the Future
of Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA. Ed. by
Lionel C. Briand and Alexander L. Wolf. IEEE Computer Society, 2007, pp. 85–103.
doi: 10.1109/FOSE.2007.25 (cit. on p. 1).

[21] Machiel van der Bijl, Arend Rensink, and Jan Tretmans. “Compositional Testing with
IOCO”. In: Formal Approaches to Software Testing, Third International Workshop on Formal
Approaches to Testing of Software, FATES 2003, Montreal, Quebec, Canada, October 6th, 2003.
Ed. by Alexandre Petrenko and Andreas Ulrich. Vol. 2931. Lecture Notes in Computer
Science. Springer, 2003, pp. 86–100. doi: 10.1007/978-3-540-24617-6_7 (cit. on
p. 32).

[22] Robert V. Binder, Bruno Legeard, and Anne Kramer. “Model-Based Testing: Where
Does It Stand?” In: Communications of the ACM 58.2 (2015), pp. 52–56. doi: 10.1145/
2697399 (cit. on p. 7).

[23] Dines Bjørner and Cliff B. Jones, eds. The Vienna Development Method: The Meta-
Language. Vol. 61. Lecture Notes in Computer Science. Springer, 1978. doi: 10.1007/3-
540-08766-4 (cit. on p. 38).

http://dx.doi.org/10.1145/1062455.1062530
http://dx.doi.org/10.1145/1062455.1062530
http://dx.doi.org/10.1109/TOOLS.2001.10046
http://dx.doi.org/10.1145/1159789.1159792
http://dx.doi.org/10.1007/BF01558665
http://dx.doi.org/10.1007/BF01558665
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://dx.doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/FOSE.2007.25
http://dx.doi.org/10.1007/978-3-540-24617-6_7
http://dx.doi.org/10.1145/2697399
http://dx.doi.org/10.1145/2697399
http://dx.doi.org/10.1007/3-540-08766-4
http://dx.doi.org/10.1007/3-540-08766-4

82 Bibliography

[24] Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson. “Specifying and Gen-
erating Test Cases Using Observer Automata”. In: Formal Approaches to Software Testing,
4th International Workshop, FATES 2004, Linz, Austria, September 21, 2004, Revised Selected
Papers. Ed. by Jens Grabowski and Brian Nielsen. Vol. 3395. Lecture Notes in Computer
Science. Springer, 2004, pp. 125–139. doi: 10.1007/978-3-540-31848-4_9 (cit. on
p. 61).

[25] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. “An Approach to Object-
Orientation in Action Systems”. In: Mathematics of Program Construction, MPC’98,
Marstrand, Sweden, June 15-17, 1998, Proceedings. Ed. by Johan Jeuring. Vol. 1422. Lec-
ture Notes in Computer Science. Springer, 1998, pp. 68–95. doi: 10.1007/BFb0054286
(cit. on pp. 28, 29).

[26] Roger T. Burlton. An Introduction to ”The Business Process Manifesto”. 2012. url: http:
//www.brcommunity.com/b672.php (visited on 04/07/2016) (cit. on p. 12).

[27] Mats Carlsson and Per Mildner. “Sicstus Prolog-the First 25 Years”. In: Theory and
Practice of Logic Programming 12.1-2 (Jan. 2012), pp. 35–66. issn: 1471-0684. doi: 10.
1017/S1471068411000482 (cit. on p. 28).

[28] Mats Carlsson, Greger Ottosson, and Björn Carlson. “An Open-Ended Finite Domain
Constraint Solver”. In: Programming Languages: Implementations, Logics, and Programs, 9th
International Symposium, PLILP’97, Including a Special Trach on Declarative Programming
Languages in Education, Southampton, UK, September 3-5, 1997, Proceedings. Ed. by Hugh
Glaser, Pieter H. Hartel, and Herbert Kuchen. Vol. 1292. Lecture Notes in Computer
Science. Springer, 1997, pp. 191–206. doi: 10.1007/BFb0033845 (cit. on p. 34).

[29] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. “Learning Extended
Finite State Machines”. In: Software Engineering and Formal Methods - 12th International
Conference, SEFM 2014, Grenoble, France, September 1-5, 2014. Proceedings. Ed. by Dimitra
Giannakopoulou and Gwen Salaün. Vol. 8702. Lecture Notes in Computer Science.
Springer, 2014, pp. 250–264. doi: 10.1007/978-3-319-10431-7_18 (cit. on p. 38).

[30] Wing Kwong Chan, Shing Chi Cheung, and T. H. Tse. “Fault-Based Testing of Database
Application Programs with Conceptual Data Model”. In: Fifth International Conference
on Quality Software (QSIC 2005), 19-20 September 2005, Melbourne, Australia. IEEE Com-
puter Society, 2005, pp. 187–196. doi: 10.1109/QSIC.2005.27 (cit. on p. 9).

[31] Anis Charfi and Mira Mezini. “Hybrid Web Service Composition: Business Processes
Meet Business Rules”. In: Service-Oriented Computing - ICSOC 2004, Second International
Conference, New York, NY, USA, November 15-19, 2004, Proceedings. Ed. by Marco Aiello,
Mikio Aoyama, Francisco Curbera, and Mike P. Papazoglou. ACM, 2004, pp. 30–38.
doi: 10.1145/1035167.1035173. url: http://doi.acm.org/10.1145/1035167.
1035173 (cit. on p. 13).

[32] Kwang-Ting Cheng and Anjur S. Krishnakumar. “Automatic Functional Test Genera-
tion Using the Extended Finite State Machine Model”. In: Proceedings of the 30th Design
Automation Conference. Dallas, Texas, USA, June 14-18, 1993. Ed. by Alfred E. Dunlop.
ACM Press, 1993, pp. 86–91. doi: 10.1145/157485.164585 (cit. on p. 38).

[33] Kwang-Ting Cheng and Anjur S. Krishnakumar. “Automatic Generation of Functional
Vectors Using the Extended Finite State Machine Model”. In: ACM Transactions on De-
sign Automation of Electrical Systems 1.1 (1996), pp. 57–79. doi: 10.1145/225871.225880
(cit. on p. 38).

http://dx.doi.org/10.1007/978-3-540-31848-4_9
http://dx.doi.org/10.1007/BFb0054286
http://www.brcommunity.com/b672.php
http://www.brcommunity.com/b672.php
http://dx.doi.org/10.1017/S1471068411000482
http://dx.doi.org/10.1017/S1471068411000482
http://dx.doi.org/10.1007/BFb0033845
http://dx.doi.org/10.1007/978-3-319-10431-7_18
http://dx.doi.org/10.1109/QSIC.2005.27
http://dx.doi.org/10.1145/1035167.1035173
http://doi.acm.org/10.1145/1035167.1035173
http://doi.acm.org/10.1145/1035167.1035173
http://dx.doi.org/10.1145/157485.164585
http://dx.doi.org/10.1145/225871.225880

Bibliography 83

[34] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random Test-
ing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000.
Ed. by Martin Odersky and Philip Wadler. ACM, 2000, pp. 268–279. doi: 10.1145/
351240.351266 (cit. on pp. 1, 2, 10).

[35] Siddhartha R. Dalal, Ashish Jain, Nachimuthu Karunanithi, J. M. Leaton, Christopher
M. Lott, Gardner C. Patton, and Bruce M. Horowitz. “Model-Based Testing in Practice”.
In: Proceedings of the 1999 International Conference on Software Engineering, ICSE’ 99, Los
Angeles, CA, USA, May 16-22, 1999. Ed. by Barry W. Boehm, David Garlan, and Jeff
Kramer. ACM, 1999, pp. 285–294. url: http://portal.acm.org/citation.cfm?id=
302405.302640 (cit. on p. 7).

[36] Richard A DeMillo. Mutation Analysis as a Tool for Software Quality Assurance. Tech. rep.
Georgia Institue of Technology - Atlanta School Of Information and Computer Science,
1980 (cit. on p. 9).

[37] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. “Hints on Test Data
Selection: Help for the Practicing Programmer”. In: IEEE Computer 11.4 (1978), pp. 34–
41. doi: 10.1109/C-M.1978.218136 (cit. on p. 9).

[38] Anna Derezinska and Anna Szustek. “CREAM - A system for Object-Oriented Muta-
tion of C# Programs”. In: Annals Gdansk University of Technology - Faculty of ETI 5 (2007),
pp. 389–406 (cit. on p. 9).

[39] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travassos.
“A Survey on Model-Based Testing Approaches: a Systematic Review”. In: Proceedings
of the 1st ACM International Workshop on Empirical Assessment of Software Engineering
Languages and Technologies: Held in Conjunction with the 22Nd IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2007. WEASELTech ’07. Atlanta,
Georgia: ACM, 2007, pp. 31–36. doi: 10.1145/1353673.1353681 (cit. on pp. 2, 7, 78).

[40] Michael Fagan. “Reviews and Inspections”. In: Software Pioneers - Contributions to Soft-
ware Engineering (2002), pp. 562–573 (cit. on p. 1).

[41] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Laurent Mounier, Radu Ma-
teescu, and Mihaela Sighireanu. “CADP - A Protocol Validation and Verification
Toolbox”. In: Computer Aided Verification, 8th International Conference, CAV ’96, New
Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings. Ed. by Rajeev Alur and Thomas
A. Henzinger. Vol. 1102. Lecture Notes in Computer Science. Springer, 1996, pp. 437–
440. doi: 10.1007/3-540-61474-5_97 (cit. on p. 28).

[42] George Fink and Karl N. Levitt. “Property-Based Testing of Privileged Programs”. In:
10th Annual Computer Security Applications Conference, ACSAC 1994, 5-9 December, 1994
Orlando, FL, USA. IEEE, 1994, pp. 154–163. doi: 10.1109/CSAC.1994.367311 (cit. on
p. 10).

[43] Miguel A. Francisco, Macias Lopez, Henrique Ferreiro, and Laura M. Castro. “Turn-
ing Web Services Descriptions into QuickCheck Models for Automatic Testing”. In:
Proceedings of the Twelfth ACM SIGPLAN Erlang Workshop, Boston, Massachusetts, USA,
September 28, 2013. Ed. by Steve Vinoski and Laura M. Castro. ACM, 2013, pp. 79–86.
doi: 10.1145/2505305.2505306 (cit. on p. 78).

[44] Gordon Fraser, Franz Wotawa, and Paul Ammann. “Testing with Model Checkers: A
Survey”. In: Software Testing, Verification and Reliability 19.3 (2009), pp. 215–261. doi:
10.1002/stvr.402 (cit. on p. 2).

http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1145/351240.351266
http://portal.acm.org/citation.cfm?id=302405.302640
http://portal.acm.org/citation.cfm?id=302405.302640
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1145/1353673.1353681
http://dx.doi.org/10.1007/3-540-61474-5_97
http://dx.doi.org/10.1109/CSAC.1994.367311
http://dx.doi.org/10.1145/2505305.2505306
http://dx.doi.org/10.1002/stvr.402

84 Bibliography

[45] Lars-Åke Fredlund, Clara Benac Earle, Ángel Herranz-Nieva, and Julio Mariño-
Carballo. “Property-Based Testing of JSON Based Web Services”. In: 2014 IEEE In-
ternational Conference on Web Services, ICWS, 2014, Anchorage, AK, USA, June 27 - July 2,
2014. IEEE Computer Society, 2014, pp. 704–707. doi: 10.1109/ICWS.2014.110 (cit. on
p. 47).

[46] Vignir Gudmundsson, Mikael Lindvall, Luca Aceto, Johann Bergthorsson, and Dhar-
malingam Ganesan. “Model-Based Testing of Mobile Systems - An Empirical Study
on QuizUp Android App”. In: Proceedings First Workshop on Pre- and Post-Deployment
Verification Techniques, PrePost@IFM 2016, Reykjavik, Iceland, 4th June 2016. Ed. by Luca
Aceto, Adrian Francalanza, and Anna Ingolfsdottir. Vol. 208. EPTCS. 2016, pp. 16–30.
doi: 10.4204/EPTCS.208.2 (cit. on p. 35).

[47] Peli de Halleux and Nikolai Tillmann. “Parameterized Test Patterns for Effective Test-
ing with Pex”. In: Research in Software Engineering, Microsoft research 21 (2008) (cit. on
p. 16).

[48] Hartmann Software Group. Business Rule Management System. 2012. url: http://www.
hartmannsoftware.com/Blog/Enterprise-Rule-Applications/brms (visited on
04/07/2016) (cit. on p. 12).

[49] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian Nielsen, Paul Pet-
tersson, and Arne Skou. “Testing Real-Time Systems Using UPPAAL”. In: Formal Meth-
ods and Testing, An Outcome of the FORTEST Network, Revised Selected Papers. Ed. by
Robert M. Hierons, Jonathan P. Bowen, and Mark Harman. Vol. 4949. Lecture Notes in
Computer Science. Springer, 2008, pp. 77–117. doi: 10.1007/978-3-540-78917-8_3
(cit. on pp. 8, 60).

[50] Jay Hilyard and Stephen Teilhet. “Delegates, Events, and Lambda Expressions”. In: C#
3.0 Cookbook. ”O’Reilly Media, Inc.”, 2007, pp. 316–365 (cit. on p. 15).

[51] William E. Howden. “Weak Mutation Testing and Completeness of Test Sets”. In: IEEE
Transactions on Software Engineering 8.4 (1982), pp. 371–379. doi: 10.1109/TSE.1982.
235571 (cit. on p. 8).

[52] John Hughes. “QuickCheck Testing for Fun and Profit”. In: Practical Aspects of Declara-
tive Languages, 9th International Symposium, PADL 2007, Nice, France, January 14-15, 2007.
Ed. by Michael Hanus. Vol. 4354. Lecture Notes in Computer Science. Springer, 2007,
pp. 1–32. doi: 10.1007/978-3-540-69611-7_1 (cit. on pp. 1, 11, 40).

[53] John Hughes, Ulf Norell, Nicholas Smallbone, and Thomas Arts. “Find More Bugs with
QuickCheck!” In: Proceedings of the 11th International Workshop on Automation of Software
Test, AST@ICSE 2016, Austin, Texas, USA, May 14-15, 2016. Ed. by Christof J. Budnik,
Gordon Fraser, and Francesca Lonetti. ACM, 2016, pp. 71–77. doi: 10.1145/2896921.
2896928 (cit. on pp. 2, 78).

[54] John Hughes, Benjamin C. Pierce, Thomas Arts, and Ulf Norell. “Mysteries of Drop-
Box: Property-Based Testing of a Distributed Synchronization Service”. In: 2016 IEEE
International Conference on Software Testing, Verification and Validation, ICST 2016, Chicago,
IL, USA, April 11-15, 2016. IEEE Computer Society, 2016, pp. 135–145. doi: 10.1109/
ICST.2016.37 (cit. on p. 2).

[55] Antti Huima. “Implementing Conformiq Qtronic”. In: Testing of Software and Commu-
nicating Systems, 19th IFIP TC6/WG6.1 International Conference, TestCom 2007, 7th In-
ternational Workshop, FATES 2007, Tallinn, Estonia, June 26-29, 2007, Proceedings. Ed.
by Alexandre Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang Grieskamp.
Vol. 4581. Lecture Notes in Computer Science. Springer, 2007, pp. 1–12. doi: 10.1007/
978-3-540-73066-8_1 (cit. on p. 8).

http://dx.doi.org/10.1109/ICWS.2014.110
http://dx.doi.org/10.4204/EPTCS.208.2
http://www.hartmannsoftware.com/Blog/Enterprise-Rule-Applications/brms
http://www.hartmannsoftware.com/Blog/Enterprise-Rule-Applications/brms
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1109/TSE.1982.235571
http://dx.doi.org/10.1109/TSE.1982.235571
http://dx.doi.org/10.1007/978-3-540-69611-7_1
http://dx.doi.org/10.1145/2896921.2896928
http://dx.doi.org/10.1145/2896921.2896928
http://dx.doi.org/10.1109/ICST.2016.37
http://dx.doi.org/10.1109/ICST.2016.37
http://dx.doi.org/10.1007/978-3-540-73066-8_1
http://dx.doi.org/10.1007/978-3-540-73066-8_1

Bibliography 85

[56] Monica Hutchins, Herbert Foster, Tarak Goradia, and Thomas J. Ostrand. “Experiments
of the Effectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria”. In:
Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, May
16-21, 1994. Ed. by Bruno Fadini, Leon J. Osterweil, and Axel van Lamsweerde. IEEE
Computer Society / ACM Press, 1994, pp. 191–200 (cit. on p. 13).

[57] Laura Inozemtseva and Reid Holmes. “Coverage Is Not Strongly Correlated with Test
Suite Effectiveness”. In: 36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014. Ed. by Pankaj Jalote, Lionel C. Briand, and
André van der Hoek. ACM, 2014, pp. 435–445. doi: 10.1145/2568225.2568271 (cit.
on p. 13).

[58] Simon Holm Jensen, Suresh Thummalapenta, Saurabh Sinha, and Satish Chandra.
“Test Generation from Business Rules”. In: 8th IEEE International Conference on Soft-
ware Testing, Verification and Validation, ICST 2015, Graz, Austria, April 13-17, 2015. IEEE
Computer Society, 2015, pp. 1–10. doi: 10.1109/ICST.2015.7102608 (cit. on p. 78).

[59] Simon Holm Jensen, Suresh Thummalapenta, Saurabh Sinha, and Satish Chandra.
“Test Generation from Business Rules”. In: 8th IEEE International Conference on Soft-
ware Testing, Verification and Validation, ICST 2015, Graz, Austria, April 13-17, 2015. IEEE
Computer Society, 2015, pp. 1–10. doi: 10.1109/ICST.2015.7102608 (cit. on p. 78).

[60] Yue Jia and Mark Harman. “An Analysis and Survey of the Development of Mutation
Testing”. In: IEEE Transactions on Software Engineering 37.5 (2011), pp. 649–678. doi:
10.1109/TSE.2010.62 (cit. on pp. 9, 10).

[61] Elisabeth Jöbstl. “Model-Based Mutation Testing with Constraint and SMT Solvers”.
PhD thesis. Graz University of Technology - Institute for Software Technology, 2014

(cit. on pp. 28–30, 33, 58).

[62] Henry S. Warren Jr. Hacker’s Delight, Second Edition. Pearson Education, 2013. url:
http://www.hackersdelight.org/ (cit. on p. 16).

[63] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. “Are Mutants a Valid Substitute for Real Faults in Software Testing?”
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014. Ed. by Shing-Chi
Cheung, Alessandro Orso, and Margaret-Anne D. Storey. ACM, 2014, pp. 654–665. doi:
10.1145/2635868.2635929 (cit. on p. 13).

[64] Mohammad Reza Keyvanpour, Hajar Homayouni, and Hossein Shirazee. “Automatic
Software Test Case Generation: An Analytical Classification Framework”. In: Interna-
tional Journal of Software Engineering and Its Applications 6.4 (2012), pp. 1–16 (cit. on p. 1).

[65] Sunwoo Kim, John Clark, and John McDermid. The Rigorous Generation of Java Mutation
Operators Using HAZOP. Tech. rep. The University of York - Department of Computer
Science, 1999 (cit. on p. 9).

[66] Willibald Krenn, Rupert Schlick, and Bernhard K. Aichernig. “Mapping UML to La-
beled Transition Systems for Test-Case Generation - A Translation via Object-Oriented
Action Systems”. In: Formal Methods for Components and Objects - 8th International Sym-
posium, FMCO 2009, Eindhoven, The Netherlands, November 4-6, 2009. Revised Selected Pa-
pers. Ed. by Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede, and Michael
Leuschel. Vol. 6286. Lecture Notes in Computer Science. Springer, 2009, pp. 186–207.
doi: 10.1007/978-3-642-17071-3_10 (cit. on p. 10).

http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1109/ICST.2015.7102608
http://dx.doi.org/10.1109/ICST.2015.7102608
http://dx.doi.org/10.1109/TSE.2010.62
http://www.hackersdelight.org/
http://dx.doi.org/10.1145/2635868.2635929
http://dx.doi.org/10.1007/978-3-642-17071-3_10

86 Bibliography

[67] Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard K. Aichernig, Elisabeth Jöbstl,
and Harald Brandl. “MoMuT::UML Model-Based Mutation Testing for UML”. In: 8th
IEEE International Conference on Software Testing, Verification and Validation, ICST 2015,
Graz, Austria, April 13-17, 2015. IEEE Computer Society, 2015, pp. 1–8. doi: 10.1109/
ICST.2015.7102627 (cit. on pp. 1, 10, 27).

[68] Leonidas Lampropoulos and Konstantinos Sagonas. “Automatic WSDL-Guided Test
Case Generation for PropEr Testing of Web Services”. In: Proceedings 8th International
Workshop on Automated Specification and Verification of Web Systems, WWV 2012, Stock-
holm, Sweden, 16th July 2012. Ed. by Josep Silva and Francesco Tiezzi. Vol. 98. EPTCS.
2012, pp. 3–16. doi: 10.4204/EPTCS.98.3 (cit. on p. 78).

[69] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Uppaal Tron User Manual. Tech.
rep. Aalborg University - Department of Computer Science, 2009 (cit. on p. 8).

[70] Frank Leymann et al. “Web Services Flow Language (WSFL 1.0)”. In: (2001) (cit. on
p. 13).

[71] Huiqing Li and Simon J. Thompson. “Improved Semantics and Implementation
Through Property-Based Testing with Quickcheck”. In: 9th International Workshop on
Automation of Software Test, AST 2014, Hyderabad, India, May 31 - June 1, 2014. Ed. by
Hong Zhu, Jerry Gao, Saurabh Sinha, and Lu Zhang. ACM, 2014, pp. 50–56. doi:
10.1145/2593501.2593509 (cit. on p. 11).

[72] J. Jenny Li and W. Eric Wong. “Automatic Test Generation from Communicating Ex-
tended Finite State Machine (CEFSM)-Based Models”. In: 5th International Symposiun
on Object Oriented Real-Time Distributed Computing, ISORC 2002, Washington, DC, USA,
April 29 - May 1, 2002. IEEE Computer Society, 2002, pp. 181–188. doi: 10.1109/ISORC.
2002.1003693. url: https://doi.org/10.1109/ISORC.2002.1003693 (cit. on p. 38).

[73] Richard Lipton. Fault Diagnosis of Computer Programs. Tech. rep. Carnegie Mellon Uni-
versity, 1971 (cit. on p. 8).

[74] Malte Lochau, Sven Peldszus, Matthias Kowal, and Ina Schaefer. “Model-Based Test-
ing”. In: Formal Methods for Executable Software Models - 14th International School on For-
mal Methods for the Design of Computer, Communication, and Software Systems, SFM 2014,
Bertinoro, Italy, June 16-20, 2014, Advanced Lectures. Vol. 8483. Lecture Notes in Com-
puter Science. Springer, 2014. doi: 10.1007/978-3-319-07317-0 (cit. on p. 7).

[75] Nancy A. Lynch and Mark R. Tuttle. An Introduction to Input/Output Automata. Tech.
rep. Massachusetts Institute of Technology - Laboratory for Computer Science, 1988

(cit. on p. 31).

[76] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. “Overcom-
ing the Equivalent Mutant Problem: A Systematic Literature Review and a Compara-
tive Experiment of Second Order Mutation”. In: IEEE Transactions on Software Engineer-
ing 40.1 (2014), pp. 23–42. doi: 10.1109/TSE.2013.44 (cit. on p. 9).

[77] Robert C. Martin, Dirk Riehle, and Frank Buschmann. Pattern Languages of Program
Design, 3. Addison-Wesley Professional, 1998 (cit. on p. 52).

[78] Ali Mili and Fairouz Tchier. Software testing: Concepts and Operations. John Wiley and
Sons, 2015 (cit. on p. 1).

[79] Mehdi MirzaAghaei and Ali Mesbah. “DOM-Based Test Adequacy Criteria for Web
Applications”. In: International Symposium on Software Testing and Analysis, ISSTA’14,
San Jose, CA, USA - July 21 - 26, 2014. Ed. by Corina S. Pasareanu and Darko Marinov.
ACM, 2014, pp. 71–81. doi: 10.1145/2610384.2610406 (cit. on p. 14).

http://dx.doi.org/10.1109/ICST.2015.7102627
http://dx.doi.org/10.1109/ICST.2015.7102627
http://dx.doi.org/10.4204/EPTCS.98.3
http://dx.doi.org/10.1145/2593501.2593509
http://dx.doi.org/10.1109/ISORC.2002.1003693
http://dx.doi.org/10.1109/ISORC.2002.1003693
https://doi.org/10.1109/ISORC.2002.1003693
http://dx.doi.org/10.1007/978-3-319-07317-0
http://dx.doi.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1145/2610384.2610406

Bibliography 87

[80] Harvey Motulsky and Arthur Christopoulos. Fitting Models to Biological Data Using
Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. Oxford University
Press, 2004 (cit. on p. 68).

[81] Leonardo Mendonca de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 14th International Con-
ference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer Science.
Springer, 2008, pp. 337–340. doi: 10.1007/978-3-540-78800-3_24 (cit. on p. 28).

[82] “Mutation-Driven Test Case Generation Using Short-Lived Concurrent Mutants - First
Results”. In: CoRR abs/1601.06974 (2016). Withdrawn. url: http://arxiv.org/abs/
1601.06974 (cit. on p. 28).

[83] Rickard Nilsson. ScalaCheck: Property-Based Testing for Scala. 2008. url: http : / /
scalacheck.org/ (visited on 04/05/2016) (cit. on p. 12).

[84] A. Jefferson Offutt and Jane Huffman Hayes. “A Semantic Model of Program Faults”.
In: Proceedings of the 1996 International Symposium on Software Testing and Analysis, ISSTA
1996, San Diego, CA, USA, January 8-10, 1996. Ed. by Steve J. Zeil and Will Tracz. ACM,
1996, pp. 195–200. doi: 10.1145/229000.226317 (cit. on p. 9).

[85] Lee Pike. “Smartcheck: Automatic and Efficient Counterexample Reduction and Gen-
eralization”. In: Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothen-
burg, Sweden, September 4-5, 2014. Ed. by Wouter Swierstra. ACM, 2014, pp. 53–64. doi:
10.1145/2633357.2633365 (cit. on p. 12).

[86] Irith Pomeranz and Sudhakar M. Reddy. “LOCSTEP: A Logic-Simulation-Based Test
Generation Procedure”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 16.5 (1997), pp. 544–554. doi: 10.1109/43.631218 (cit. on p. 10).

[87] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Christian Kühnel, Martin
Baumgartner, Bernd Sostawa, Rüdiger Zölch, and Thomas Stauner. “One Evaluation of
Model-Based Testing and Its Automation”. In: 27th International Conference on Software
Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. Ed. by Gruia-Catalin
Roman, William G. Griswold, and Bashar Nuseibeh. ACM, 2005, pp. 392–401. doi:
10.1145/1062455.1062529 (cit. on p. 1).

[88] Jane Radatz, Anne Geraci, and Freny Katki. “IEEE Standard Glossary of Software En-
gineering Terminology”. In: lEEE Standard (1990), pp. 610–12 (cit. on p. 8).

[89] T. Ramalingom, Krishnaiyan Thulasiraman, and Anindya Das. “Context Independent
Unique State Identification Sequences for Testing Communication Protocols Mod-
elled as Extended Finite State Machines”. In: Computer Communications 26.14 (2003),
pp. 1622–1633. doi: 10.1016/S0140-3664(03)00116-6 (cit. on p. 38).

[90] M.S. Raunak, Christian Murphy, and Bryan O’Haver. An Empirical Study of Off-by-One
Loop Mutation. Tech. rep. University of Pennsylvania - Department of Computer and
Information Science, 2015 (cit. on p. 9).

[91] Florian Rosenberg and Schahram Dustdar. “Business Rules Integration in BPEL - A
Service-Oriented Approach”. In: 7th IEEE International Conference on E-Commerce Tech-
nology (CEC 2005), 19-22 July 2005, München, Germany. IEEE Computer Society, 2005,
pp. 476–479. doi: 10.1109/ICECT.2005.25 (cit. on pp. 2, 13).

[92] Florian Rosenberg and Schahram Dustdar. “Design and Implementation of a Service-
Oriented Business Rules Broker”. In: 7th IEEE International Conference on E-Commerce
Technology Workshops (CEC 2005 Workshops), 19 July 2005, München, Germany. IEEE Com-
puter Society, 2005, pp. 55–63. doi: 10.1109/CECW.2005.10 (cit. on pp. 2, 12).

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1601.06974
http://arxiv.org/abs/1601.06974
http://scalacheck.org/
http://scalacheck.org/
http://dx.doi.org/10.1145/229000.226317
http://dx.doi.org/10.1145/2633357.2633365
http://dx.doi.org/10.1109/43.631218
http://dx.doi.org/10.1145/1062455.1062529
http://dx.doi.org/10.1016/S0140-3664(03)00116-6
http://dx.doi.org/10.1109/ICECT.2005.25
http://dx.doi.org/10.1109/CECW.2005.10

88 Bibliography

[93] Ronald G. Ross. “The Business Rules Manifesto”. In: Business Rules Group 2 (2003) (cit.
on p. 12).

[94] Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf. “Evaluating Test
Suites and Adequacy Criteria Using Simulation-Based Models of Distributed Systems”.
In: IEEE Transactions on Software Engineering 34.4 (2008), pp. 452–470. doi: 10.1109/
TSE.2008.33 (cit. on p. 14).

[95] August-Wilhelm Scheer and Markus Nüttgens. “ARIS Architecture and Reference
Models for Business Process Management”. In: Business Process Management, Models,
Techniques, and Empirical Studies. Ed. by Wil M. P. van der Aalst, Jörg Desel, and An-
dreas Oberweis. Vol. 1806. Lecture Notes in Computer Science. Springer, 2000, pp. 376–
389. doi: 10.1007/3-540-45594-9_24 (cit. on p. 12).

[96] Kurt Schelfthout. FsCheck. 2007. url: https://github.com/fscheck/FsCheck (visited
on 04/05/2016) (cit. on pp. 12, 16).

[97] Emil Sekerinski and Kaisa Sere. “A Theory of Prioritizing Composition”. In: The Com-
puter Journal 39.8 (1996), pp. 701–712. doi: 10.1093/comjnl/39.8.701 (cit. on p. 29).

[98] Hossain Shahriar and Mohammad Zulkernine. “MUTEC: Mutation-Based Testing of
Cross Site Scripting”. In: ICSE Workshop on Software Engineering for Secure Systems, SESS
2009, Vancouver, BC, Canada, May 19, 2009. IEEE Computer Society, 2009, pp. 47–53. doi:
10.1109/IWSESS.2009.5068458 (cit. on p. 9).

[99] Martin Tappler. “Symbolic Input Output Conformance Checking of Action System
Models”. MA thesis. Graz University of Technology, 2015 (cit. on p. 29).

[100] Satish Thatte. “XLANG: Web Services for Business Process Design”. In: Microsoft Cor-
poration 2001 (2001) (cit. on p. 13).

[101] The Business Rules Group. Defining Business Rules - What Are They Really? Final Re-
port, Revision 1.3. 2000. url: http://www.businessrulesgroup.org/first_paper/
br01c0.htm (visited on 04/07/2016) (cit. on p. 12).

[102] Henry S. Thompson, David Beech, M. Maloney, and Noah Mendelsohn. XML schema
part 1: Structures, Second Edition. Tech. rep. Massachusetts Institute of Technology -
World Wide Web Consortium, 2004. url: http://www.w3.org/TR/xmlschema-1/
(cit. on p. 36).

[103] Nikolai Tillmann and Jonathan de Halleux. “Pex - White Box Test Generation for
.NET”. In: Tests and Proofs, Second International Conference, TAP 2008, Prato, Italy, April
9-11, 2008. Proceedings. Ed. by Bernhard Beckert and Reiner Hähnle. Vol. 4966. Lecture
Notes in Computer Science. Springer, 2008, pp. 134–153. doi: 10.1007/978-3-540-
79124-9_10 (cit. on p. 16).

[104] Stefan Tiran. The Argos Manual. Tech. rep. Graz University of Technology - Institute for
Software Technology, 2012 (cit. on p. 29).

[105] Jan Tretmans. “Test Generation with Inputs, Outputs and Repetitive Quiescence”. In:
Software - Concepts and Tools 17.3 (1996), pp. 103–120 (cit. on pp. 30, 31).

[106] Jan Tretmans and Hendrik Brinksma. “TorX: Automated Model-Based Testing”. In:
First European Conference on Model-Driven Software Engineering. Ed. by A. Hartman and
K. Dussa-Ziegler. Dec. 2003, pp. 31–43 (cit. on p. 8).

[107] Mark Utting and Bruno Legeard. Practical Model-Based Testing - A Tools Approach. Mor-
gan Kaufmann, 2007. url: http://www.elsevierdirect.com/product.jsp?isbn=
9780123725011 (cit. on pp. 1, 7, 14).

[108] Mark Utting, Alexander Pretschner, and Bruno Legeard. “A Taxonomy of Model-Based
Testing Approaches”. In: Softw. Test., Verif. Reliab. 22.5 (2012), pp. 297–312. doi: 10.
1002/stvr.456. url: https://doi.org/10.1002/stvr.456 (cit. on pp. 7, 38).

http://dx.doi.org/10.1109/TSE.2008.33
http://dx.doi.org/10.1109/TSE.2008.33
http://dx.doi.org/10.1007/3-540-45594-9_24
https://github.com/fscheck/FsCheck
http://dx.doi.org/10.1093/comjnl/39.8.701
http://dx.doi.org/10.1109/IWSESS.2009.5068458
http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://www.w3.org/TR/xmlschema-1/
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456

Bibliography 89

[109] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. “Model-Based Testing of Object-Oriented Reactive Sys-
tems with Spec Explorer”. In: Formal Methods and Testing, An Outcome of the FORTEST
Network, Revised Selected Papers. Ed. by Robert M. Hierons, Jonathan P. Bowen, and
Mark Harman. Vol. 4949. Lecture Notes in Computer Science. Springer, 2008, pp. 39–
76. doi: 10.1007/978-3-540-78917-8_2 (cit. on p. 7).

[110] Scott Wlaschin. Choosing Properties for Property-Based Testing. 2014. url: https : / /
FsharpForFunAndProfit.com/posts/property- based- testing- 2/ (visited on
04/06/2016) (cit. on pp. 10, 16).

[111] W. Eric Wong and Aditya P. Mathur. “Reducing the Cost of Mutation Testing: An
Empirical Study”. In: Journal of Systems and Software 31.3 (1995), pp. 185–196. doi: 10.
1016/0164-1212(94)00098-0 (cit. on p. 9).

[112] Qian Yang, J. Jenny Li, and David M. Weiss. “A Survey of Coverage-Based Testing
Tools”. In: The Computer Journal 52.5 (2009), pp. 589–597. doi: 10.1093/comjnl/bxm021
(cit. on p. 13).

http://dx.doi.org/10.1007/978-3-540-78917-8_2
https://FsharpForFunAndProfit.com/posts/property-based-testing-2/
https://FsharpForFunAndProfit.com/posts/property-based-testing-2/
http://dx.doi.org/10.1016/0164-1212(94)00098-0
http://dx.doi.org/10.1016/0164-1212(94)00098-0
http://dx.doi.org/10.1093/comjnl/bxm021

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Solution
	1.3 Related Publication
	1.3.1 Prior Research
	1.3.2 Contribution of the Author

	1.4 Research Project: TRUCONF
	1.4.1 Project Summary
	1.4.2 Contribution to the Project

	1.5 Structure of this Thesis

	2 Background
	2.0.1 Model-Based Testing
	2.0.2 Tools

	2.1 Mutation Testing
	2.1.1 Unresolved Problems
	2.1.2 Tools
	2.1.3 Model-Based Mutation Testing

	2.2 Property-Based Testing
	2.2.1 QuickCheck Inspired Tools

	2.3 Business Rule Engines
	2.3.1 Business Rule and Business Process
	2.3.2 Tools

	2.4 Coverage Criteria
	2.4.1 Mutation-Based Criteria
	2.4.2 Model-Based Criteria

	3 Testing with FsCheck
	3.1 A Few Simple Examples
	3.2 Shrinking
	3.3 Generating Test Data
	3.3.1 Custom Generators
	3.3.2 Custom Shrinking

	3.4 Model-Based Testing
	3.4.1 Procedure
	3.4.2 Example: Bank Account

	4 Testing with MoMuT
	4.1 Architecture
	4.2 Object-Oriented Action Systems
	4.2.1 Action System
	4.2.2 Object Orientation and Complex Data Types

	4.3 Abstract Test-Case Generation
	4.3.1 Input-Output Conformance of Labeled Transition Systems
	4.3.2 Refinement Checking

	5 Using Rule-Engine Models in Model-Based Testing
	5.1 Translating Business Rule Models into EFSMs
	5.1.1 Rule-Engine Models
	5.1.2 Extended Finite-State Machines
	5.1.3 Translation Function

	5.2 Using EFSMs for Property-Based Testing
	5.2.1 Property of an EFSM
	5.2.2 Integrating EFSM into FsCheck
	5.2.3 Optional Attributes

	6 Integration of External Test-Case Generators
	6.1 Interface for External Test-Case Generators
	6.1.1 Interface Design
	6.1.2 Interface Implementation

	6.2 Regex-Based Sequence Integration
	6.3 MoMuT Integration
	6.3.1 From EFSMs to Object-Oriented Action Systems
	6.3.2 Test Goals via Observer Automata
	6.3.3 Test-Sequence Integration

	7 Case Study: Testing a Web-Service Application
	7.1 Test-Equipment Manager
	7.1.1 Found Issues
	7.1.2 Experiments

	7.2 Unit-Under-Test Manager
	7.2.1 Found Issues
	7.2.2 Experiments

	7.3 Summary and Outcome

	8 Conclusion
	8.1 Summary
	8.2 Discussion
	8.2.1 Concluding Remarks

	8.3 Related Work
	8.4 Future Work

	Bibliography

