How Fast is MQTT?
Statistical Model Checking and Testing of IoT Protocols

Bernhard K. Aichernig and Richard Schumi

Institute of Software Technology, Graz University of Technology, Austria
{aichernig, rschumi}@ist.tugraz.at

Abstract. MQTT is one of the major messaging protocols in the Inter-
net of things (IoT). In this work, we investigate the expected performance
of MQTT implementations in various settings. We present a model-based
performance testing approach that allows a fast simulation of specific us-
age scenarios in order to perform a quantitative analysis of the latency.
Out of automatically generated log-data, we learn the distributions of
latencies and apply statistical model checking to analyse the functional
and timing behaviour. The result is a novel testing and verification tech-
nique for analysing the performance of IoT protocols. Two well-known
open source MQTT implementations are evaluated and compared.

Keywords: statistical model checking, model-based testing, performance,
latency, Internet of things, MQTT, Mosquitto, emqtt.

1 Introduction

With the growing popularity of the Internet of Things (IoT), the quality of
its underlying infrastructure moves into focus. In particular, the software needs
special attention, since it is often exempted from any warranty. In this work, we
are investigating implementations of the Message Queuing Telemetry Transport
(MQTT) protocol, one of the major machine-to-machine messaging protocols
of the IoT. MQTT follows a publish-subscribe pattern and allows clients, e.g.,
sensors in a smart home, to distribute messages via a central server, called the
broker [7]. Recently, we have found 18 protocol violations in four open-source
MQTT brokers [30]. In this work, we concentrate on performance.

In contrast to previous performance studies [13,17,20,31], we present a sta-
tistical model checking (SMC) approach that is able to (1) predict the expected
performance on a model, and (2) to verify the prediction on a real system.
SMC [21] is a verification method that can answer both, quantitative and quali-
tative questions. The questions are expressed as properties of a stochastic model
which are checked by analysing simulations of this model.

Our method is realised with a property-based testing (PBT) tool that per-
forms the data generation for learning the distributions of broker latencies, the
model simulation, and the verification of the system. PBT is a random testing
technique that tries to falsify a given property. Properties describe the expected

2 B. K. Aichernig & R. Schumi

Functional Model-Based Linear
Model Testing Regression
|

Usage Latency Dis-
ST Y
suT Profiles tributions

SMC of

the SUT + j—

Probabilities, (real time)
Accepted/Rejected ——
(virtual time) Model (STA)

Fig. 1: Overview of the data flow of our method.

behaviour of a system-under-test (SUT) and may be algebraic or model-based.
A PBT tool generates inputs and checks if the property holds.

Previously, we had integrated SMC into a PBT tool [3] in order to check
stochastic models as well as implementations. With this technique, we checked
the expected response-time of an industrial web application [29]. Based on this
previous work, we present a method that statistically verifies the latencies of
MQTT brokers from a client’s perspective.

Figure 1 illustrates our method: (1) we automatically test a broker from
multiple clients and record its latencies in log-files. For every client, we run a
model-based testing process concurrently and generate test cases from a func-
tional model. (2) We derive latency distributions via linear regression. Since
the latency is influenced by the parallel activity on the server, the distributions
are parametrised by the number of active clients. These latency distributions
are added to the functional model resulting in a stochastic timed automata
(STA) [6] model. (3) For simulating the behaviour of real MQTT clients, we add
usage profiles, containing probabilities and waiting times related to messages.
(4) We perform SMC on the resulting stochastic model in order to answer the
question “What is the probability that the message latency is under a certain
threshold?”. This process can be accelerated by using a virtual time scale, i.e., a
fraction of real time. (5) We check if the predicted performance hypothesis holds
on the SUT. This is achieved via a statistical hypothesis test (another SMC
algorithm). For this final test, less samples than for forming the hypothesis are
needed, and hence, this SMC step scales well, although carried out under real
time with real delays.

Related Work. In contrast to our work, classical load testing methods anal-
yse the performance directly on the SUT. Models are mostly used for test-case
generation [5] and for modelling user populations [14,28]. Others focus solely on
simulation on the model-level [8,9,11,23]. In our work, we exploit the models for
both, testing a system as well as simulating the performance on the model.

The most related tool is UPPAAL SMC [10], because it supports SMC and
test-case generation. However, our use of PBT facilitates the definition of spe-
cialized generators for complex test-data, which is important for load testing.
Furthermore, modelling in a programming language may be more acceptable to
programmers and testers.

How fast is MQTT? 3

The performance of MQTT implementations has been tested in the past
[13,20,31], but without constructing a performance model for simulating MQTT
under different usage scenarios. The most similar work to ours [17] modelled
MQTT with probabilistic timed automata and checked performance with SMC.
However, they did not validate their model against real implementations, and
hence, it did not include real timing behaviour.

To the best of our knowledge our work is novel: we are the first who apply
SMC to the performance analysis of MQTT brokers with learned latency distri-
butions, and who check the results from the model against real MQTT brokers
by performing hypothesis testing.

Contributions. This research builds upon our previous work [29], where
we introduced our method and applied it to an industrial web-service applica-
tion. Here, we present the following novel contributions: (1) the evaluation of
our method for another application domain, namely for protocol testing. This
demonstrates the generality of our method. (2) We present a comparative eval-
uation of two MQTT implementations. This shows that our method is also able
to compare the performance of different systems and helps to choose the right
one, depending on a specific usage scenario. (3) This is the first SMC approach
for MQTT that also supports a direct verification of the results by testing real
MQTT brokers. (4) We release the source of our tool in order to make our
method available to the public and to facilitate the reproduction of our results.

Structure. First, Sect. 2 introduces the background of SMC and PBT based
on our previous work [3]. Next, in Sect. 3 we give an example and demonstrate
our method. Then, Sect. 4 presents an evaluation with two open-source MQTT
implementations. Finally, we conclude in Sect. 5.

2 Background

2.1 Statistical Model Checking (SMC)

SMC is a verification method for checking qualitative and quantitative proper-
ties of a stochastic model. These properties are usually defined with (temporal)
logics. In order to answer questions, like “What is the probability that the model
satisfies a property?” or “Is the probability that the model satisfies a property
above or below a certain threshold?”, a statistical model checker produces sam-
ples, i.e. random walks on the stochastic model and checks whether the property
holds for these samples. Various SMC algorithms are applied in order to compute
the total number of samples needed to find an answer for a specific question, or to
compute a stopping criterion. This criterion determines when we can stop sam-
pling, because we have found an answer with a required certainty. In this work,
we focus on the following algorithms common in the SMC literature [21,22].
Monte Carlo simulation with Chernoff-Hoeffding bound. The algo-
rithm computes the required number of simulations n in order to estimate the
probability « that a stochastic model satisfies a Boolean property. The procedure

! https://github.com/schumi42/mqttCheck

https://github.com/schumi42/mqttCheck

4 B. K. Aichernig & R. Schumi

is based on the Chernoff-Hoeffding bound [16] that provides a lower limit for the
probability that the estimation error is below a value e. Assuming a confidence
1 — § the required number of simulations is n > 1/(2¢2)In(2/9).

The n simulations represent Bernoulli random variables X1, ..., X,, with out-
come z; = 1 if the property holds for the i-th simulation run and z; = 0 other-
wise. Let the estimated probability be %, = (3_;_; ;)/n, then the probability
that the estimation error is below € is greater than our required confidence. For-
mally we have: Pr(|y, —v| <€) >1— 0. After the calculation of the number of
required samples n, a standard Monte Carlo simulation is performed [22].

Sequential Probability Ratio Test (SPRT). This sequential method [32]
is a form of hypothesis testing that can answer qualitative questions. Given a
random variable X with a probability density function f(z,), we want to decide,
whether a null hypothesis Hy : 8 = 6 or an alternative hypothesis Hy : § = 6
is true for desired type I and II errors («, 8). In order to make the decision, we
start sampling and calculate the log-likelihood ratio after each observation of x;:

log A,, = log—lm = logl:mli = Zlogi
P I f(aib0) =1
i=1

We continue sampling as long as the ratio is inside the indifference region
log% < log A, < log % H, is accepted when log A,, > log %, and H,
when log A, <log % [15].

In this work, we form a hypothesis about the expected latencies with the
Monte Carlo method on the model. Then, we check with SPRT if this hypothesis
holds on the SUT. This is faster than running Monte Carlo directly on the SUT.

2.2 Property-Based Testing (PBT)

PBT is a random-testing technique that aims to check the correctness of prop-
erties. A property is a high-level specification of the expected behaviour of a
function- or system-under-test that should always hold. With PBT, inputs can
be generated automatically by applying data generators, e.g., a random list gen-
erator. The inputs are fed to the function or system-under-test and the property
is evaluated. If it holds, then this indicates that the function or system works as
expected, otherwise a counterexample is produced.

One of the key features of PBT is its support for model-based testing. Models
encoded as extended finite state machines (EFSMs) [19] can serve as source for
state-machine properties. An EFSM is a 6-tuple (S, s0,V,I,0,T). S is a finite
set of states, sg € S is the initial state, V is a finite set of variables, I is a
finite set of inputs, O is a finite set of outputs, T is a finite set of transitions. A
transition ¢t € T' can be described as a 6-tuple (ss, 1, g, 0p, 0, s¢), S5 is the source
state, ¢ is an input, g is a guard, op is a sequence of assignment operations, o is
an output, s; is the target state [19].

In order to derive a state-machine property from an EFSM, we have to write
a specification comprising the initial state, commands and a generator for the

How fast is MQTT? 5

next transition given the current state of the model. Commands encapsulate (1)
preconditions that define the permitted transition sequences, (2) postconditions
that specify the expected behaviour and (3) execution semantics of transitions for
the model and the SUT. A state-machine property states that for all permitted
transition sequences, the postcondition must hold after the execution of each
command [18,25]. Simplified, such properties can be defined as follows:

cmd.runModel, cmd.runActual : S x I — S x O
emd.pre : I x S — Boolean, cmd.post : (S x O) x (S x O) — Boolean
Vse S,iel,emde Cmds:
emd.pre(i, s) = cmd.post(cmd.runModel(i, s), cmd.runActual (i, s))

We have two functions to execute a command on the model and on the SUT:
cmd.runModel and emd.runActual. The precondition c¢md.pre defines the valid
inputs for a command. The postcondition cmd.post compares the outputs and
states of the model and the SUT after the execution of a command.

PBT is a powerful testing technique that allows a flexible definition of gen-
erators and properties via inheritance or composition. The first implementation
of PBT was QuickCheck for Haskell [12]. Numerous reimplementations followed
for other programming languages. We use FsCheck? for C#.

2.3 Stochastic Timed Automata

Several probabilistic extensions of timed automata [4] have been proposed. Here,
we follow the definition of stochastic timed automata (STA) by Ballarini et
al. [6]: an STA is a tuple (L,lg, A,C,I,E, F,W) comprising a classical timed
automaton (L, ly, A, C, I, E), probability density functions (PDFs) F' = (f;)icL
for the sojourn time, and natural weights W = (w).cp for the edges. L is a
finite set of locations, ly € L is the initial location, A is a finite set of actions, C
is a finite set of clocks with valuations u(c) € Rsq, I : L — B(C) is a finite set
of invariants for the locations and E C L x A x B(C) x 2¢ x L is a finite set of
edges between locations, with an action, a guard and a set of clock resets.

The transition relation can be described as follows. For a state given by
the pair (I,u), where [is a location and u a clock valuation u € C' — Rx,
the PDF f; is used to choose the sojourn time d, which changes the state to
(I,u 4+ d), where we lift the plus operator to the clock valuation as follows:
u+d =, {¢c = ulc)+d|c € C}. After this change, an edge e is selected out
of the set of enabled edges E(l,u + d) with the probability we/ >)¢ (1 uta) Wh-
Then, a transition to the target location I’ of e and v’ = u + d is performed. For
our models the underlying stochastic process is a semi-Markov process, since the
clocks are reset at every transition, but we do not assume exponential waiting
times, and therefore, the process is not a standard continuous-time Markov chain.

2.4 Integration of SMC into PBT

Recently, we have demonstrated that SMC can be integrated into a PBT tool
in order to perform SMC of PBT properties [3]. With this approach, we can

2 https://fscheck.github.io/FsCheck

https://fscheck.github.io/FsCheck

6 B. K. Aichernig & R. Schumi

Configurations

SMC Property

in classical SMC, as well as P Result
stochastic implementations. T
For the integration, we in- Parameter
troduced our own new SMC Fig.2: Data flow diagram of an SMC property.
properties that take a PBT
property, configurations for the PBT execution, and parameters for the specific
SMC algorithm as input. Then, our properties perform an SMC algorithm by
utilizing the PBT tool as simulation environment and they return either a quan-
titative or qualitative result, depending on the algorithm. Figure 2 illustrates
how we evaluate a PBT state-machine property within an SMC property.

Algorithm 1 shows pseudo code of an SMC property for the SPRT (see
Sect. 2.1). The inputs of this algorithm are a PBT property, configurations for
PBT, probabilities for Hy/H; and the type I and type II error parameters a, 3.
The algorithm produces samples (Line 3) and calculates the log likelihood ratio
(Line 4 & 6) repeatedly, until we are outside the indifference region that is de-
fined by o and 8 (Line 7). Finally, when we are outside the indifference region,
we return H; as result, when the ratio is below the lower bound and Hy other-
wise. Our integration method can, e.g., be applied for a statistical conformance
analysis by comparing an ideal model to a stochastic faulty implementation or it
can also simulate a stochastic model. In this work, we apply it for a performance
analysis with the model and for the verification of real brokers.

verify stochastic models, like X
SUT —>| State-Machine F

Model —| Property

3 Method

In this section, we show how we derive timed models from logs and how we can
apply these models to simulate stochastic usage profiles. The description follows
the steps from the overview in Fig. 1.

Model-Based Testing. Our SUT is an MQTT broker that allows clients
to connect /disconnect, subscribe/unsubscribe to topics and publish messages for
such topics. Each of these actions can be performed with a corresponding control
message, which is defined by the MQTT standard [7]. We treat the broker as a
black box and test it from a client’s perspective.

Algorithm 1 Pseudo code of a SPRTProperty.

Input: prop: PBT property for producing a sample, config: configuration for checking the property
with PBT, py, p;: probabilities for Hy and H; «, 8: type I and type II error parameters
1: ratio + 0

2: do

3: if prop.Check(config) then > produces sample and checks result of PBT property
4: ratio < ratio + log(%) > calculate the log likelihood ratio
5: else

6: ratio < ratio + log(;:Zé > calculate the log-likelihood ratio
7: while log % < ratio A ratio < log % > stop when threshold was reached
8: if ratio > log % then

9: return H, > H; is accepted

10: else
11: return Ho > Hy is accepted

How fast is MQTT? 7

start —>

disconnect, - connect, -
-, ConnClosed -, ConnAck

subscribe(topic), -
Subs[topic] := Subs[topic]+1, SubAck
unsubscribe(topic), -
Subs[topic| := Subs[topic]-1, UnSubAck
publish(topic,msg), -
-, PubAck
publish(topic,msg), Subs[topic] = Received[topic&msg]
Received[topic&msg] := 0, PubFin

connected

start —>

publish(topic,msg), Subs[topic] < Received[topic&msg]
Received[topic&msg] := Received[topic&msg]+1, MsgRec

Fig. 3: Functional model for an MQTT client.

The upper state machine in Fig. 3 represents the messages that we test. We
run multiple of these state machines concurrently, in order to produce log-data
that includes latencies for simultaneous messages of several clients. Each transi-
tion of the state machine is labelled with an input 4, an optional guard g / assign-
ment operations op, and an output o. Some transition inputs are parametrised
with generated data, e.g., a topic for subscribe. We apply PBT generators in
order to produce inputs and their required data. Previously, we have demon-
strated the data generation for such functional models and also model-based
testing [1,2]. To keep it simple, we assume that a client can only subscribe to
topics that it did not subscribe to before (the same for unsubscribe).

In order to manage the subscriptions, we have a global map Subs that stores
the subscription numbers for each topic. This map is needed when publishing,
because we want to check if the number of received messages corresponds to
the number of subscribed clients. In order to perform this check, we have a
second state machine (Fig. 3 bottom) that represents the message receivers.
This machine stores the number of received messages in a map Received that
takes the topic concatenated with the message (topic&msg) as key. The map is
updated for each message receiver, and when all messages were delivered, then a
PubFin output is produced. For simplicity, we omit some assignment operations,
e.g., for a subscriptions set.

Based on this functional model, we perform model-based testing with a PBT
tool, which generates random test cases that are executed on an MQTT broker.
During this testing phase, we capture the latencies of messages in a log-file.
Note that the latency is the duration that a client must wait until it receives a
response to a sent message from the broker or until the message is delivered to
all receivers in case of a publish.

A simplified log excerpt from the MQTT implementation Mosquitto is pre-
sented in Table 1. It shows that we record the message type (Msg), the number of
active clients resp. open message exchanges (#ActiveMsgs), the total number of

Table 1: Example log-data of one client for Mosquitto.

Msg # ActiveMsgs|# TotalSubs|TopicSize|MsgSize|#Subs|#Receivers|Latency[ms]
connect 47 266 0 - - - 110.82
subscribe 47 270 14 - - - 2.45
publish 47 270 14 52 7 7 32.72
unsubscribe 45 12 14 - - - 1.25
publish 46 272 14 74 1 1 2.13

8 B. K. Aichernig & R. Schumi

subscriptions (# TotalSubs), the size of the topic (TopicSize) and message string
(MsgSize), the number of subscribers for a topic when a publish occurs (#Subs),
the number of receivers of a published message (#Receivers), and the latency.
For this initial logging phase, the available transitions in the current state of
the functional model (Fig. 3 top) are chosen with a uniform distribution. In the
disconnected state, the only choice is a connect message and in the connected
state all other messages are selected with equal frequency. We do not apply any
sojourn times in this phase, since we want to capture the latencies for many
concurrent messages.

Linear Multiple Regression. In previous work, we showed that linear
regression can be applied for learning response-time distributions of a web ap-
plication [29]. Now, we learn latency distributions with this method.

Linear regression produces a regression model that describes the relationships
of the log-variables (or features) with the target variable and can be applied for
the prediction of the target variable. The quality of the regression model can
be measured with the coefficient of determination (R2-score) [24], which defines
how well a prediction model for regression fits given data.

First, we checked if we can find any bias in our logs, e.g., a bias might be
caused by log-data generation that is not random enough. In this case, we could
obtain an artificial correlation between features. Another problem might be that
the log-data generation might be unintentionally set up in a way, where relevant
scenarios for the prediction were not tested frequently enough. Both these issues
can result in a regression model that has a good RZ-score, but it would not
produce reliable predictions for our simulation with SMC. In order to reduce the
risk of such biases, it is helpful to carefully analyse the data with visualisations,
like scatter plots, histograms or correlation matrices. For example, if a correlation
matrix shows correlations that should not be there, then this might indicate a
problem during the initial test-case generation.

In the next step, the data cleaning, these data visualisations also helped to
find issues with the data. Here, log-entries with disproportionately long latencies,
i.e. outliers, are removed. We consider the top 5% of the entries per message type
as outlier. Moreover, we flag and remove entries where exceptions were raised,
e.g., due to time-outs or connection failures, since they are rare and we are
primarily interested in latencies of successful message exchanges.

Next, comes the feature selection, where we select variables that have a signif-
icant influence on the target variable. We can also apply the correlation matrices
and look for features that are correlated with the target variable. The correlation
can be measured with a correlation coeflicient r, e.g., a common one was intro-
duced by Pearson [26] and gives us a value r € [—1, 1], where 1 is a total positive
correlation and —1 a negative correlation. Features that have a medium or strong
correlation r > 0.3 are most important for the regression, but sometimes also
features with a weak correlation 0.1 < r < 0.3 can help to improve the regres-
sion model. In addition, most regression tools show what features are relevant
for the regression, which we will see later. Note, we should avoid features that
have a high correlation among each other, since they might be redundant. For

How fast is MQTT? 9

example, the number of subscribers to a topic of a published message is highly
correlated with the number of message receivers. Hence, we only select one of
these. Additionally, we checked if certain features only have an effect on specific
message types, which can, e.g., be resolved by setting these features to zero for
this message. The selected features can be seen in our regression formula:

Latency ~ Msg + # ActiveMsgs + # TotalSubs + #Subs

We performed the regression in R with the standard Im function.® It was per-
formed with log-data from Mosquitto, which contained 100 test cases with a
random number of clients (3-100) and a length of 50 messages. This produced
log-files with about 300,000 entries. The required number of test cases was deter-
mined by stepwise increasing the dataset and by executing the regression, until
there was no more increase in the R2-score.

Listing 1.1 shows

1 Estimate Std.Error t value Pr(>|t])
the results of the lin- 2 (Intercept) —8.009707 0.1106356 —72.397 < 2e—16 %%
3 |Msgdisconnect 8.084679 0.1234019 65.515 < 2e—16 #%x
ear multiple regres- 4 |Msgpublish 9.066681 0.1395017 64.993 < 2e—16 *xx*
5 |Msgsubscribe 8.771242 0.1419899 61.774 < 2e—16 ***
sion. We are mainly 6 Msgunsubscribe 9.294850 0.1294843 71.784 < 2e—16 **x
7 |#ActiveMsgs 1.358794 0.0033433 406.417 < 2e—16 #%x
interested in the first 8 |#TotalSubs 0.002503 0.0002084 12.011 < 2e—16 *xx*
9 |#Subs 0.294270 0.0307663 9.565 < 2e—16 x*x

three columns of this
listing. The first col-
umn shows the intercept and the regression coefficients. The intercept is the
mean of the latency, when all features are zero and the coefficients come from
the features. For categorical variables, e.g., the message type Msg, we have mul-
tiple coefficients. In the second column, there is the estimate of the mean and
the third column shows the standard error that gives the average variation of
the estimate from the actual average value. Note that the xxx at the end of each
line, shows that the variables are all highly significant. For more details, see [27].

In order to apply this regression model in our method, we encode it in a delay
function that takes the message type, the number of active messages, the total
number of subscribers, and the number of subscribers for the currently published
message as input and returns the parameters 1 and o of the normal distribution
as result:

Listing 1.1: Excerpt of the linear regression output.

delay : Msg x Ns g XNZ[) XNZ() - RxR

In this function, we perform a linear combination of the distributions given by
the estimates and standard errors of the associated regression coefficients for the
inputs. This gives us a combined normal distribution that depends on the inputs
of this function. For example, for a subscribe message that happens when 15 other
messages are active and when there are zero subscribers, the linear combination
works as follows. The associated regression coefficients of Listing 1.1 (Lines 2,
5 & 7) are combined in order to obtain parameters for a normal distribution
p=—8010+8.771 4+ 15 x 1.359 and ¢ = \/0.1112 +0.1422 + (15 x 0.003)2. In
the next phase, we integrate the delay function that calculates these parameters
into the functional model.

3 https://www.r-project.org/

https://www.r-project.org/

10 B. K. Aichernig & R. Schumi

MinTimeBetwMsg: 0, MaxTimeBetwMsg: 500,
MsgWeights:{connect: 1, disconnect: 1, publish: 5, subscribe: 3, unsubscribe: 2}

Listing 1.2: Usage profile UP1 with time bounds and weights for messages.

Statistical Model Checking. For the evaluation of the model, we intro-
duce usage profiles that describe the behaviour of an MQTT client, i.e. how long
it should wait between sending messages, and with what probabilities it should
send certain messages. An example usage profile (UP1) is shown in Listing 1.2.
The time between messages is selected uniformly inside the bounds [MinTime-
BetwMsg, MaxTimeBetwMsg] and we have weights that define the message fre-
quency. (In specific settings, it may make sense to create different usage profiles
for certain types of components, e.g., a sensor might only publish messages.)

This usage profile is added
to the functional model and
also the learned latency distri-
butions (expressed in the de-
lay function) are integrated.

This gives us a combined @
timed model in the form of

: : ?disconnect N\ !ConnAck
a stochastic timed automa- (5" .= delay(
ton, as explained in Sect. 2.3
and illustrated in Fig. 4. In
this model, all locations have
probability density functions PubFin
fi for the sojourn time. The
connected and disconnected
locations have a uniform dis-
tribution given by an upper
and lower bound [a, b]. These
bounds come from our us-
age profile. All other locations
have a normal distribution for the sojourn time. The parameters for this distri-
bution are computed by the delay function. In contrast to the functional model,
these additional locations apply the message latencies. The locations have one
incoming edge that represents sending a message and an outgoing edge for the
response. Moreover, the weights w, from our usage profile are added to the tran-
sitions for sending messages. Note that we have omitted the parameters of the
delay function and also some assignments that are necessary for these parame-
ters, in order to keep the figure more readable.

disconnected
[0,500]

start —

7connect

!ConnClosed (i, 8) := delay()

?subscribe
(11, 0) := de

connected

]

7publish
(1, 0) := delay

Fig.4: Stochastic timed automaton for the tim-
ing behaviour of an MQTT client.

With this model, we can evaluate a usage profile by simulating the expected

latencies. Moreover, we can simulate a complete MQTT setup by running mul-

tiple models concurrently. A run of the model can be defined as: (lg, ug) duar,

(l1,u1) G202 and it produces a timed trace in the form (di,a1), (de, as),. ..,

where d; is a delay and a; € A. An example trace may look like this:

(97,connect), (9, ConAck),(344,subscribe)(24,SubAck), (58,subscribe), (64,Suback)

How fast is MQTT? 11

While we execute the model, we can check properties to answer questions,
like “What is the probability that the latency of each interaction of a client
within a given MQTT setup is under a certain threshold?”. In order to estimate
the probability of such properties, we perform a Monte Carlo simulation with
Chernoff-Hoeffding bound. This evaluation requires too many samples to be
efficiently executed on the SUT, and hence, we only run it on the model. For
example, checking the probability that the latency threshold of 50 ms is satisfied
for each client of an MQTT setup with 130 clients with parameters ¢ = 0.05
and 6 = 0.01, requires 1060 samples and returns a probability of 0.84, when a
test-case length of ten is considered.

Fortunately, the SPRT requires fewer samples, and is therefore, better suited
for the evaluation of the SUT. The probability that was computed on the model
serves as a hypothesis to be checked on the model, i.e. we check if the SUT
is at least as good as predicted. We consider the predicted probability 0.84 as
alternative hypothesis and select a probability of 0.74 as null hypothesis, which
is 0.1 smaller, because we want to be able to reject the hypothesis that the
SUT has a smaller probability. (We select a difference of 0.1, because for this
difference our model prediction was close enough to the actual probability of the
SUT in most cases, and a smaller difference would need too many samples for an
efficient evaluation of the SUT.) By running the SPRT (with 0.01 as type I and II
error parameters) for each client, we can check these hypotheses. The alternative
hypothesis (probability 0.84) was accepted for all clients and on average 41.15
samples (test cases) were needed for the decision.

Implementation. Our method was implemented in a similar way, as de-
scribed in our previous work [29], where we illustrated how timed models can be
executed with PBT. Previously, we introduced custom generators for the sim-
ulation of response times, which work in a similar way for latencies. Moreover,
we demonstrated the application of user profiles that work in the same way as
our usage profiles, and we presented a test-case generation algorithm for PBT
that can perform the initial model-based testing phase as well as the execution
of our timed model. For brevity, we omit the details of the implementation and
refer to our previously mentioned published source code.

4 Evaluation

We evaluated our method by applying it to two open-source MQTT implementa-
tions: Mosquitto 1.4.15 and emqtt 2.3.5, running with quality of service level one
and with the default configurations. We analyse the needed number of samples
and the run times. MQTT implementations typically have various settings, e.g.,
the length of the in-flight message queue or an option to group together TCP
packets (Nagle’s algorithm). The influence of such settings might be a potential
threat to the validity of our comparison. We worked with the default settings
as this is commonly done and we also tried to adapt the mentioned settings to
face this threat. A comparison of the regression models and response-time visu-
alisations did not show a difference for the adapted settings. Note that Nagle’s

12 B. K. Aichernig & R. Schumi

MinTimeBetwMsg: 50, MaxTimeBetwMsg: 250,
MsgWeights:{connect: 1, disconnect: 1, publish: 7, subscribe: 1, unsubscribe: 1}

Listing 1.3: Usage profile UP2 with more frequent publish messages.

algorithm has no effect, because it only groups messages if acknowledgements
are pending. This situation does not occur, since our tests are synchronous, i.e.
we always wait for an acknowledgement before sending a new message.

The evaluation was performed on a Windows server (version 2008 R2) with
a 2.1 GHz Intel Xeon E5-2620 v4 CPU with 8 Cores and 32 GB RAM. This
machine was running the clients and the broker in order to avoid an influence of
the network. However, a possible influence of the client processes on the broker
might cause a threat to validity of our evaluation. To face this issue, we measured
the CPU load, to make sure that it is no bottle neck. During the evaluation, the
CPU load was below 60% most of the time, and there were only some rare
peaks, where the CPU was over 90%. We also tried to increase the priority of
the broker process, but this showed no difference. The RAM usage of the brokers
was insignificant since the total RAM of the servers was more than enough.

We applied Visual Studio 2012 with .NET framework 4.5, NUnit 2.64, and
FsCheck 2.92 in order to run the tests and for SMC. The library M2Mqtt* served
as a client interface to facilitate the interaction with the brokers.

We follow the method of Sect. 3, in order to answer the question “What is
the probability that the message latency is under a certain threshold?”. Hence,
we check the probability that all messages within a sequence of ten messages
for all clients of a selected MQTT setup have a latency under this threshold.
We perform the analysis as shown in Sect. 3, with the difference that we test
Mosquitto and emqtt, and we check various thresholds and different numbers of
clients. We apply the same usage profile as before and the regression model for
emqtt was similar to the one shown for Mosquitto in Listing 1.1. Additionally, we
evaluate another usage profile (UP2), as shown in Listing 1.3 that has a higher
weight for publish messages and different bounds for the time between messages.

As shown before, we apply a Monte Carlo simulation with Chernoff-Hoeffding
bound with parameters e = 0.05 and § = 0.01, which requires 1060 samples per
data point, to evaluate the timed model. The results for Mosquitto and emqtt
for both user profiles are shown in Fig. 5 and Fig. 6. Table 2 shows the average
time needed for these evaluations.

As expected, a decrease in the probability can be observed, when the number
of clients increases, and a higher threshold causes a higher probability. The
advantage of applying SMC on a model is that it runs much faster than on the
SUT. With a virtual time of 1/10 of the actual time, we can perform evaluations
that would take hours on the SUT within minutes.

It is also important to check
the probabilities that we received ; ;
through SMC of the timed model, Carlo simulation of the model.
on the SUT. This was done o ox. [Syher o Clerel =110 [[T o0 1

plained in Sect. 3 with the SPRT. [OPT emqtt 1:28|4:49|4:57|5:05|5:15|5:23
UP2 Mosquitto 2:39(3:03(3:16(3:22{3:40(3:51

4 https://m2mqtt.wordpress.com UP2 emqtt 2:39(3:02(3:18]3:27|3:41|3:55

Table 2: Average time [min:s| for the Monte

https://m2mqtt.wordpress.com

How fast is MQTT?

13

threshold[ms]

120

1+ || —e— 50 Clients
;‘E 0.9 — | —m— 70 Clients
% sk || —e— 90 Cli?nts
S —+— 110 Clients
£ 0.7 || —— 130 Clients
06 2" | | | I L e ¢ | | | | | --e-150 Clients

20 40 60 80 100 100

20 40 60 80
threshold[ms]

120

Fig.5: UP1 Monte Carlo simulation results for Mosquitto (left) & emqtt (right).

threshold[ms]

1 || —e— 50 Clients
:i 09l || —m— 70 Clients
;_g 08l || —®— 90 Clients
3 —+— 110 Clients
2 07F || —— 130 Clients
0.6 % I I I I | 2 ¢ ¢ | ¢ | -e-150 Clients

20 40 60 80 100 120 20 40 60 80 100 120

threshold[ms]

Fig.6: UP2 Monte Carlo simulation results for Mosquitto (left) & emqtt (right).

Table 3 and Table 4 show the results for both usage profiles and brokers. We
focused on some of the more interesting data points for the evaluation. The ta-
bles show hypotheses, test results, the needed number of samples and execution
times for different numbers of clients and thresholds. Note that in order to ob-
tain an average number of needed samples, we run the SPRT concurrently for
each client and calculate the average of these runs.

In most cases, hypothesis H; was accepted for almost all clients, which means
that the probability of the SUT was at least as high, as the predicted one from the
model. However, the prediction was not always accurate. Hy was also sometimes
accepted and in some cases H; was only accepted by a fraction of the clients that
tested this hypothesis, e.g., for Mosquitto with threshold 30 ms and 90 clients,
only 60% of the clients accepted H; for UP1. The prediction was sometimes
inaccurate for small latency thresholds. The reason might be that we mainly
learned the latency distributions under conditions with high load, and hence,
our model might not be completely accurate for small latencies.

Moreover, the prediction performed rather poorly for high numbers of clients
(> 130), especially for UP2. This might be caused by the fact that the initial
testing phase for log-data had only a maximum of 100 clients and the higher
number of clients might be too far away from this initial test phase. However,
H, was still accepted for most data points, which means that the model was
good enough in these cases. Furthermore, it is apparent that the SPRT can be
performed with fewer samples, i.e. we need mostly about 50 samples (except for
some outliers), compared to the 1060 for the Monte Carlo simulation.

By comparing the results of Mosquitto and emqtt, it can be seen that pre-
dicted probabilities are too similar to make a clear distinction. However, the
evaluation of the SUT with hypothesis testing was able to find some differences,
i.e. in some cases emqtt showed a slightly better performance. For example, the
second data row of Table 3 shows that Mosquitto was not able to accept Hj,
where emqtt accepted it, although the same hypotheses were tested. This means
that emqtt had a better performance in this case. For UP1, this was the case
especially for small thresholds, for UP2 the performance was more similar for

14 B. K. Aichernig & R. Schumi

Table 3: Results of the evaluation of the SUT with the SPRT for UP1.

. Mosquitto emgqtt
Threshold|#Clients Hy | H, |Result|#Samples|Time[min:s]| Ho | H; |Result|#Samples|Time[min:s]
30 50 09 1 H, 44 2:31 09 1 H, 44 2:28
30 70 0.88(0.98| Hp 22.47 5:43 0.88/0.98| H; 44.14 2:51
30 90 0.79]0.89|60% H.| 276.31 39:12 0.8(0.9| H; 41.02 2:56
30 110 0.74|0.84| H, 73.26 7:22 0.72/0.82| H; 42.55 3:40
30 130 0.68|0.78| Hop 46.68 11:33 0.64/0.74| H; 77.92 9:21
50 50 09 1 H, 44 2:10 09 1 H, 44 2:06
50 70 09 1 |73% H,y 43.53 10:01 09 1 H, 44 2:09
50 90 0.88/0.98| H, 50.47 4:18 0.88/0.98| H; 43 2:30
50 110 0.810.9 H, 41.35 3:19 0.84/0.94| H; 41.25 2:50
50 130 0.74|0.84| H, 41.15 3:12 0.75/0.85| H; 38.41 2:37
70 50 09 1 H, 44 2:04 09 1 H, 44 2:33
70 70 09 1 H, 44 2:10 09 1 H, 44 2:08
70 90 09 1 H, 44 2:37 09 1 H, 44 2:29
70 110 0.88/0.98| H, 43.16 2:57 0.89/0.99| H; 44.38 3:14
70 130 0.78/0.88| H, 39.32 3:00 0.830.93| H; 41.21 2:37

both implementations and there is also a case where Mosquitto showed better
performance. (Row 13 of Table 4, shows that only 90% of the clients accepted
H; for emqtt, but all clients for Mosquitto.)

We analysed the execution times of the different phases of our method. The
initial testing phase took about 5-8 min and the linear regression about 10-12 s.
Note that these two phases have to be performed only once, and the resulting
model can then be applied for various evaluations.

A Monte Carlo simulation of the model required about 3-5 min for 1060
samples as shown in Table 2. The evaluation of the SUT with hypothesis testing
took most of the time 2—4 min, in some cases about 10 min and in only in one
case 39 min. Hence, most of our predictions could be tested efficiently in about
the same time that was needed to make the prediction with the timed model.

Running a Monte Carlo simulation with 1060 samples directly on the SUT
would take approximately 2—-3 hours. Performing this simulation becomes quickly
impractical when various data points should be analysed. Therefore, our model-
based approach makes sense, because it can be executed faster.

Table 4: Results of the evaluation of the SUT with the SPRT for UP2.

. Mosquitto emqtt
Threshold|#Clients Hy | H; |Result |#Samples|Time[min:s]| Ho | H:1 | Result|#Samples|Time[min:s]
30 50 0.9 1 [96% H, 42.88 1:18 09| 1 [96% H, 43.42 1:16
30 70 0.88]0.98| Hp 17.6 1:15 0.88/0.98] H; 46.4 2:07
30 90 0.810.9| Hy 17.18 3:55 08109 H 44.98 1:42
30 110 0.72|0.82| Hp 13.43 1:39 0.72|0.82| Hp 14.61 1:14
30 130 0.65|0.75| Hp 14.55 0:56 0.7]0.8 Hyp 12.68 0:24
50 50 09| 1 H, 44 1:17 09| 1 H, 44 1:19
50 70 09| 1 [67% H,y 37.94 3:48 09 1 H, 44 1:44
50 90 0.88(0.98| H; 51.36 3:01 0.89]0.99| H, 46.2 1:54
50 110 |0.79/0.89| H: 41.42 1:46 0.81]0.91|87% Hi| 152.34 8:34
50 130 |0.72|0.82| Ho 16.46 0:58 0.76]0.86] Ho 9.51 0:23
70 50 09| 1 H, 44 2:07 09| 1 H, 44 1:16
70 70 09| 1 H, 44 2:11 09| 1 H, 44 1:18
70 90 09| 1 H, 46.04 2:41 0.9 1 [90% H, 52.81 2:47
70 110 0.87|0.97| H; 65.55 4:39 0.88|0.98| H; 43.82 1:58
70 130 0.79/0.89] Hp 48.18 5:28 0.8110.91| Hy 9.58 0:34

How fast is MQTT? 15

5 Conclusion

We have shown, how to apply SMC in order to predict the performance of MQTT
implementations under various usage scenarios. Moreover, we showed how such
predictions can be verified by testing real implementations with the SPRT.

First, we collected log-data by running model-based testing with a functional
model. Then, we applied linear regression to learn latency distributions that
we integrated into our model. Additionally, we combined this model with usage
profiles. The resulting model is a stochastic timed automaton that was simulated
to predict the expected latencies of different MQTT implementations. Finally,
we verified our prediction with hypothesis testing of the implementations.

A big advantage of our method is that we can predict the performance for
various usage scenarios with a fast model simulation and we can efficiently test
the prediction on the SUT with the SPRT. The prediction can be accelerated by
applying a virtual time that is a fraction of real time, and the test of the SUT
is efficient, because it needs fewer samples. Another benefit is that we can do
both, SMC and testing of models and SUTs, inside a PBT tool. This enables an
easy verification of the model prediction inside the same tool and it facilitates
the model and property definition in a high-level programming language.

We have evaluated our method by applying it to well-known open-source
implementations of MQTT: Mosquitto and emqtt, and the results were promis-
ing. We analysed various numbers of clients and checked the probability that
the latency is within certain thresholds. Moreover, we demonstrated that the
predicted probability was accurate in most cases and we showed that emqtt has
better performance in some cases.

In the future, we plan to evaluate different learning methods for latency
distributions and we envisage to test various types of usage profiles.

Acknowledgements. This work was supported by the TU Graz LEAD project
“Dependable Internet of Things in Adverse Environments”. We are grateful to
our colleague Martin Tappler and to the anonymous reviewers for their excellent
feedback that helped in improving the quality of the paper.

References

1. Aichernig, B.K., Schumi, R.: Property-based testing with FsCheck by deriving
properties from business rule models. In: ICSTW. pp. 219-228. IEEE (2016)

2. Aichernig, B.K., Schumi, R.: Property-based testing of web services by deriving
properties from business-rule models. Software & Systems Modeling (Dec 2017)

3. Aichernig, B.K., Schumi, R.: Statistical model checking meets property-based test-
ing. In: ICST. pp. 390-400. IEEE (2017)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183-235 (1994)

5. Arts, T.: On shrinking randomly generated load tests. In: Erlang’14. pp. 25-31.
ACM (2014)

6. Ballarini, P., Bertrand, N., Horvédth, A., Paolieri, M., Vicario, E.: Transient analysis
of networks of stochastic timed automata using stochastic state classes. In: QEST.
LNCS, vol. 8054, pp. 355-371. Springer (2013)

7. Banks, A., Gupta, R.: MQTT version 3.1.1. OASIS Standard (Dec 2014)

16

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

B. K. Aichernig & R. Schumi

Becker, S., Koziolek, H., Reussner, R.H.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3-22 (2009)
Book, M., Gruhn, V., Hiillder, M., K&hler, A., Kriegel, A.: Cost and response time
simulation for web-based applications on mobile channels. In: QSIC. pp. 83-90.
IEEE (2005)

Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata.
In: QAPL. EPTCS, vol. 85, pp. 1-16. Open Publishing Association (2012)

Chen, X., Mohapatra, P., Chen, H.: An admission control scheme for predictable
server response time for web accesses. In: WWW. pp. 545-554. ACM (2001)
Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: ICEFP. pp. 268-279. ACM (2000)

Collina, M., Corazza, G.E., Vanelli-Coralli, A.: Introducing the QEST broker: Scal-
ing the IoT by bridging MQTT and REST. In: PIMRC. pp. 36—41. IEEE (2012)
Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C., Weber, G.: Realistic load
testing of web applications. In: CSMR. pp. 57-70. IEEE (2006)

Govindarajulu, Z.: Sequential statistics. World Scientific (2004)

Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13-30 (1963)

Houimli, M., Kahloul, L., Benaoun, S.: Formal specification, verification and eval-
uation of the MQTT protocol in the Internet of Things. In: ICMIT. pp. 214-221.
IEEE (Dec 2017)

Hughes, J.: QuickCheck testing for fun and profit. In: PADL. LNCS, vol. 4354, pp.
1-32. Springer (2007)

Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine. In: ICST. pp. 230-239. IEEE (2009)
Lee, S., Kim, H., Hong, D., Ju, H.: Correlation analysis of MQTT loss and delay
according to QoS level. In: ICOIN. pp. 714-717. IEEE (2013)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
RV. LNCS, vol. 6418, pp. 122-135. Springer (2010)

Legay, A., Sedwards, S.: On statistical model checking with PLASMA. In: TASE.
pp. 139-145. IEEE (2014)

Lu, Y., Nolte, T., Bate, 1., Cucu-Grosjean, L.: A statistical response-time analysis
of real-time embedded systems. In: RTSS. pp. 351-362. IEEE (2012)

Nagelkerke, N.J.: A note on a general definition of the coefficient of determination.
Biometrika 78(3), 691-692 (1991)

Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifica-
tions with property-based testing. In: Erlang’11. pp. 39-50. ACM (2011)
Pearson, K.: Note on regression and inheritance in the case of two parents. Pro-
ceedings of the Royal Society of London 58, 240242 (1895)

Rencher, A., Christensen, W.: Methods of Multivariate Analysis. Wiley (2012)
Rina, Tyagi, S.: A comparative study of performance testing tools. Intern. Journal
of Adv. Research in Comp. Sci. and SW Eng., IJARCSSE 3(5), 1300-1307 (2013)
Schumi, R., Lang, P., Aichernig, B.K., Krenn, W., Schlick, R.: Checking response-
time properties of web-service applications under stochastic user profiles. In:
ICTSS. LNCS, vol. 10533, pp. 293-310. Springer (2017)

Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: ICST. pp. 276-287. IEEE (2017)

Thangavel, D., Ma, X., Valera, A.C., Tan, H., Tan, C.K.: Performance evaluation
of MQTT and CoAP via a common middleware. In: ISSNIP. pp. 1-6. IEEE (2014)
Wald, A.: Sequential analysis. Courier Corporation (1973)

