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Abstract. Performance testing is becoming increasingly important for
interactive systems. Evaluating their performance with respect to user
expectations is complex, especially for different system deployments. Var-
ious load-testing approaches and performance-simulation methods aim
at such analyses. However, these techniques have certain disadvantages,
like a high testing effort for load testing, and a questionable model accu-
racy for simulation methods. Hence, we propose a combination of both
techniques. We apply statistical model checking with a learned timed
model and evaluate the results on the real system with hypothesis test-
ing. Moreover, we check the established hypotheses of a reference system
on various system deployments (configurations), like different hardware
or network settings, and analyse the influence on the performance. Our
method is realised with a property-based testing tool that is extended
with algorithms from statistical model checking. We illustrate the feasi-
bility of our technique with an industrial case study of a web application.

Keywords: statistical model checking, model-based testing, system de-
ployments, property-based testing, performance, response time, stochas-
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1 Introduction

Analysing the performance of a system for specific usage scenarios is a difficult
task. It becomes even more cumbersome, when a system is deployed to customers
and should still provide certain performance properties for different hardware or
network settings. We propose a performance evaluation method that applies sta-
tistical model checking (SMC) on a timed model from a reference system in order
to derive hypotheses that allow us to verify system deployments. SMC [1] is an
evaluation method that answers qualitative or quantitative questions, which are
expressed as properties of a stochastic model or system. In contrast to existing
load-testing approaches, we can perform a fast evaluation with a model, and in
contrast to model-based methods, we verify the results of the model evaluation
on real systems.

Our approach is realised with a property-based testing (PBT) tool that was
extended with SMC algorithms [5]. PBT is a random testing method that tries
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Fig.1: Overview of the data flow of our method.

to falsify properties that define the expected behaviour of a system-under-test
(SUT). PBT tools generate random inputs and check if a property holds.

Previously, we have demonstrated how learned models can be applied to esti-
mate the probability that a system can satisfy certain response-time thresholds,
and we verified the resulting probability with hypothesis testing on the SUT.
Now, we derive hypotheses about the response time from a reference SUT, in
order to check, if deployments of this SUT with a different hardware/network
setup have a similar performance, i.e. they satisfy the same hypotheses.

The process of our method is illustrated in Fig. 1. (1) We perform model-
based testing with a functional model and capture the response times of requests
of a reference SUT as log-data. We run multiple testing processes concurrently
in order to obtain response times for simultaneous requests. (2) The log-files are
then taken as input for a linear regression, which gives us response-time distribu-
tions. (3) These distributions and stochastic user profiles are integrated into the
functional model, resulting in a combined stochastic timed automata (STA) [8]
model. (4) Next, we perform a Monte Carlo simulation of this model in order to
obtain answers for the question: “What is the probability that the response time
of each user within a user population is under a certain threshold?”. (5) The
resulting probabilities serve us as hypotheses in order to check if deployments of
the SUT can satisfy the same response-time thresholds as the reference system.
We test the deployments with the sequential probability ratio test (SPRT) [38],
a form of hypothesis testing that can usually be performed with fewer samples
than a Monte Carlo simulation.

Related Work. A number of related approaches in the area of PBT are concerned
with testing concurrent software [16,22,31]. The closest related work we found in
this area was from Arts [7]. It shows a load-testing approach with QuickCheck
that can run user scenarios on an SUT in order to determine the maximum
supported number of users. In contrast to our approach, Arts does not consider
stochastic user profiles and the user scenarios are only tested on an SUT, but
not simulated at model-level.

Related work is also in the area of load testing [9,29]. For example, Draheim
et al. [17] demonstrated a load-testing approach that simulates realistic user be-
haviour with stochastic models. Moreover, a number of related tools, like Neoload
perform load testing with user populations [35]. In contrast to our work, load



Statistical Model Checking of Response Times 3

testing is mostly performed directly on an SUT. With our approach, we want to
simulate user populations on the model-level as well. There are also many ap-
proaches that focus only on a simulation on the model-level [10,12,14,27,32.40],
but with our method we can also directly test an SUT within the same tool.

Another domain with related work, is deployment testing. For example, var-
ious related approaches apply a performance analysis of system deployments
[28,36,39]. However, in contrast to our work, they do not apply a model that
is derived from a reference SUT in order to evaluate the performance of SUT
deployments under specific usage scenarios.

The most related tool is UPPAAL SMC [13]. Similar to our approach, it
provides SMC of priced timed automata, which can simulate user populations.
It also supports testing implementations, but for this a test adapter is required,
which, e.g., handles the form-data creation. In contrast, we can use PBT features,
like data generators in order to automatically generate form data, and we can
model in a programming language. This helps testers, who are already familiar
with this language, since they do not have to learn new notations.

To the best of our knowledge our work is novel: no other work performs
SMC on a learned timed model of a reference SUT to derive hypotheses that
are verified on SUT deployments in order to check, if they provide comparable
response times for given user profiles.

Contribution. This paper builds upon our previous work [37], where we intro-
duced our model-based prediction method that enables an efficient test of the
predictions on the SUT. We evaluated this approach on an industrial web-service
application. However, it was only tested on one reference system without any de-
ployments. Hence, this work presents the following novel contributions. (1) The
major contribution is the new application of our method to analyse the per-
formance of system deployments applying hypotheses that were derived from
a reference SUT. This allows software companies to give their customers rec-
ommendations for the hardware/network requirements of a system that should
satisfy certain performance properties. (2) Another contribution is the additional
evaluation of our method by applying it to several deployments of an industrial
web-service application. This helps to find possible limitations of our approach
and emphasizes its generality.

Structure. First, Sect. 2 introduces the background of SMC, PBT and stochastic
timed automata based on previous work [37]. Then, in Sect. 3 we illustrate our
method with an example. In Sect. 4, we evaluate our approach with an industrial
web-service application as reference SUT, and we check multiple deployments
with other hardware/network configurations. Finally, we conclude in Sect. 5.

2 Background
2.1 Statistical Model Checking (SMC)

SMC is a verification method that evaluates certain properties of a stochastic
model. These properties are usually defined with (temporal) logics, and they
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can describe quantitative and qualitative questions. For example, questions, like
“What is the probability that the model satisfies a property?” or “Is the proba-
bility that the model satisfies a property above or below a certain threshold?”. In
order to answer such questions, a statistical model checker produces samples, i.e.
random walks on the stochastic model and checks whether the property holds
for these samples. Various SMC algorithms are applied, in order to compute
the total number of samples needed to find an answer for a specific question,
or to compute a stopping criterion. This criterion determines when we can stop
sampling, because we have found an answer with a required certainty. In this
work, we focus on the following algorithms, which are commonly used in the
SMC literature [13,25,26].

Monte Carlo simulation with Chernoff-Hoeffding bound. The algorithm com-
putes the required number of simulations n in order to estimate the probability
v that a stochastic model satisfies a Boolean property. The procedure is based on
the Chernoff-Hoeffding bound [20] that provides a lower limit for the probability
that the estimation error is below a value €. Assuming a confidence 1 — §, the
required number of simulations n can be calculated as follows:

> (2
n72€2n 0

The n simulations represent Bernoulli random variables Xy, ..., X,, with out-
come z; = 1, if the property holds for the i-th simulation run, and z; = 0
otherwise. Let the estimated probability be 4, = (3_1; 2;)/n, then the proba-
bility that the estimation error is below e is greater than our required confidence.
Formally, we have: Pr(|3, —v| <€) > 1—J. After the calculation of the number
of samples n, a simple Monte Carlo simulation is performed [26].

Sequential Probability Ratio Test (SPRT). This sequential method [38] is a
form of hypothesis testing, which can answer qualitative questions. Given a ran-
dom variable X with a probability density function f(z,6), we want to decide,
whether a null hypothesis Hy : 6 = 6y or an alternative hypothesis Hy : § = 6,
is true for desired type I and II errors («, 8). In order to make the decision, we
start sampling and calculate the log-likelihood ratio after each observation of x;:

ﬁ flzi,01) m
1’ i=1 (zi,61)
log A,, = log — = log = log
o >

S T = O

We continue sampling as long as log % < log A, < log % H, is accepted
when log A,,, > log %, and Hy when log A, < log % [18].

In this work, we form a hypothesis about the expected response time with
the Monte Carlo method on the model. Then, we check with the SPRT if this
hypothesis holds on a deployment of the SUT. This is faster than running a
Monte Carlo simulation directly on the deployment, since the SPRT requires a
far lower number of samples, i.e. test cases.
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2.2 Property-Based Testing (PBT)

PBT is a random-testing technique that aims to check the correctness of prop-
erties. A property is a high-level specification of the expected behaviour of a
function-under-test that should always hold. For example, the length of a con-
catenated list is always equal to the sum of lengths of its sub-lists:

V 11,1y € Lists[T)] : length(concatenate(ly,l2)) = length(ly) + length(l)

With PBT, we automatically generate inputs for such a property by apply-
ing data generators, e.g., the random list generator. The inputs are fed to the
function-under-test and the property is evaluated. If it holds, then this indicates
that the function works as expected, otherwise a counterexample is produced.
PBT also supports model-based testing. Models encoded as extended finite
state machines (EFSMs) [23] can serve as source for state-machine properties.
An EFSM is a 6-tuple (S, s, V,I,0,T). S is a finite set of states, sg € S is the
initial state, V is a finite set of variables, I is a finite set of inputs, O is a finite
set of outputs, T' is a finite set of transitions. A transition ¢ € T is a 5-tuple
(ss,1,9,0p, St), Ss 18 the source state, 4 is an input, g is a guard, op is a sequence
of output and assignment operations, s; is the target state [23]. In order to
derive a state-machine property from an EFSM, we have to write a specification
comprising the initial state, commands and a generator for the next transition
given the current state of the model. Commands encapsulate (1) preconditions
that define the permitted transition sequences, (2) postconditions that specify
the expected behaviour and (3) execution semantics of transitions for the model
and the SUT. A state-machine property states that for all permitted transition
sequences, the postcondition must hold after the execution of each transition
resp. command [21,33]. Simply put, such properties can be defined as follows:

cemd.runModel, ecmd.runActual : S x I — S x O
emd.pre : I x S — Boolean, cmd.post : (S x O) x (S x O) — Boolean
Vse S,iel,emde Cmds:
emd.pre(i, s) = cmd.post(ecmd.runModel(i, s), cmd.runActual(i, s))

There are two functions to execute a command on the model and on the SUT:
cmd.runModel and cmd.runActual. The precondition cmd.pre defines the valid
inputs for a command. The postcondition cmd.post compares the outputs and
states of the model and the SUT after the execution of a command.

PBT is a powerful testing technique that allows a flexible definition of gener-
ators and properties via inheritance or composition. The first implementation of
PBT was QuickCheck for Haskell [15]. Numerous reimplementations followed for
other programming languages, like Hypothesis® for Python or ScalaCheck [30].
We developed our method with FsCheck*. FsCheck is a .NET port of QuickCheck
with influences of ScalaCheck. It supports a functional programming style with
F# and an object-oriented style with C#. We work with C#, since it is the
programming language of our SUT.

3 https://pypi.python.org/pypi/hypothesis
4 https://fscheck.github.io/FsCheck
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Fig. 2: Data flow diagram of an SMC property.

2.3 Stochastic Timed Automata

Timed automata (TA) were originally introduced by Alur and Dill [6]. Several
extensions of TA have been proposed, including stochastically enhanced TA [11]
and continuous probabilistic TA [24]. We follow the definition of stochastic timed
automata (STA) by Ballarini et al. [8]: An STA can be expressed as a tuple
(L, 1o, A,C,I,E,F,W), where the first part is a normal TA (L,ly,A,C,I,E)
and additionally it contains probability density functions F' = (f});c, for the
sojourn time and natural weights W = (w,).cp for the edges. L is a finite set of
locations, [y € L is the initial location, A is a finite set of actions, C' is a finite
set of clocks with real-valued valuations u(c) € Rsq, I : L — B(C) is a finite
set of invariants for the locations and E C L x A x B(C) x 2¢ x L is a finite
set of transitions between locations, with an action, a guard and a set of clock
resets. The transition relation can be described as follows. For a state (I, u),
where [ € L is a location and u € C' = R is a clock valuation, the probability
density functions f; is used to choose the sojourn time d, which changes the state
to (I,u+d), where u + d means that the clock valuation is changed (u + d)(c) =
u(c) + d for all ¢ € C. After this change, an edge e is selected out of the set
of enabled edges E(l,u + d) with the probability we/ ), cp( utq) wn- Then, a
transition to the target location I’ of e and v/ = u + d is performed. For our
models, the underlying stochastic process is a semi-Markov process since the
clocks are reset at every transition, but we do not assume exponential delays,
and therefore, it is not a standard continuous-time Markov chain.

2.4 Integration of SMC into Property-Based Testing

We have demonstrated that SMC can be integrated into a PBT tool in order to
perform SMC of PBT properties [3,5], which were explained in Sect. 2.2. These
PBT properties can be evaluated on stochastic models, like in classical SMC, as
well as on stochastic implementations. For the integration, we introduced our
own new SMC properties, which take a PBT property, configurations for the
PBT execution, and parameters for the specific SMC algorithm as input. Then,
our properties perform an SMC algorithm by utilizing the PBT tool as simu-
lation environment and they return either a quantitative or qualitative result,
depending on the algorithm. Figure 2 shows how we can evaluate a state-machine
property within an SMC property. Such a state-machine property can, e.g., be
applied for a statistical conformance analysis by comparing an ideal model to a
stochastic faulty implementation or it can also simulate a stochastic model. We
evaluated our SMC properties by repeating case studies from the SMC literature
and we were able to reproduce the results.
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3 Method

In this section, we present the necessary steps to apply our method, based on
the overview presented in Fig. 1. The steps are illustrated with an example of
an incident manager that was introduced in our previous work [2,4].

Model-Based Testing. First, we perform model-based testing within PBT in or-
der to produce log-data. This initial testing phase is conducted with a functional
EFSM model. The SUT is a web-based tool that supports tasks, like creating,
editing or closing incident objects, which can, e.g., be bug reports. These objects
include attributes (form data) that are stored in a database. We automatically
generate data for the attributes with PBT generators. An example model of
the incident manager is illustrated in Fig. 3. This model is a hierarchical state
machine [19]. There are sub-state machines for each incident object and select
transitions can switch between these objects. We have a variable activeObj that
identifies the currently open incident and a map (stateMap) that has an object
identifier as key and stores the state of all incidents. Each sub-state machine
shows the tasks that can be performed for an incident object. In reality, each of
these tasks represents a page of the incident manager with required form fields
(attributes). Hence, the transitions are parametrised with attributes [4].

With this functional model, we perform classical PBT, which generates ran-
dom sequences of commands with form data. We run several testing processes
concurrently in order to produce log-data that includes response times of simul-
taneous requests. Note that the tasks of the sub-state machines in Fig. 3 consist
of multiple subtasks that are not shown in this figure for clarity. For example,
there are subtasks for opening the page (StartTask), for setting attributes (SetAt-
tribute), and for saving the page (Commit). Most of these subtasks are requests,
hence, we record them in our logs. An example log from a non-productive test
system with low computing resources (virtual machine) is represented in Table 1.
The log contains response times of tasks, subtasks, attributes, states (From, To)

Table 1: Example log-data of the incident manager.

Task |From To Subtask #ActiveUsers[Attribute[ResponseTime[ms]
Create|Global Submitted|StartTask 7 - 334
Create|Global Submitted|SetAttribute 8 Assignee 77
Edit |[Submitted|Submitted|StartTask 5 - 286
Create|Global Submitted |Commit 6 - 918
Edit |[Submitted|Submitted|SetAttribute 4 TestOrder 347
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and simultaneous requests (#ActiveUsers). For this initial testing phase, we
selected transitions with a uniform distribution.

Linear Regression. We apply a multiple linear regression in order to obtain distri-
butions for response times. First, we performed data cleaning and preprocessing,
where we, e.g., filter outliers. For example, we are not interested in unusual long
response times that are caused by network disruptions. Our aim is to maximise
the user satisfaction. Hence, we are mainly interested in average response times
under normal conditions, but not in worst-case scenarios. Next, we select the
log variables, which have a high influence on the response time. This phase is
called feature selection. This and all other steps are facilitated with the help of
data visualisations, e.g., scatter plots or correlation matrices. Finally, we can run
the linear regression by applying R, which is a standard statistics tool.> A more
detailed description of the regression can be found in our previous work [37] and
in the work of Rencher and Christensen [34].

As a result, we obtain estimates of the mean response time and standard
errors for the regression variables. We combine these values with a linear com-
bination to obtain parameters for the normal distribution for specific variable
assignments. This combination is done inside the function rtime (response time).
This function takes a task, a subtask the number of active users and an optional
attribute as input and returns the parameters p and o of the normal distribution.

rtime : Task x Subtask x Ny x Attribute - R x R

Monte Carlo Simulation. In order to apply SMC for a realistic usage scenario,
we integrate a given user profile and response-time distributions from the linear
regression into the functional model. An example user profile for the incident
manager is shown in Listing 1.1. It includes weights for tasks, user input (waiting)
time intervals between tasks/subtasks that represent the time that a user needs
for the input and data specific waiting factors, e.g., a delay per character, or a
delay per reference for the number of options of a drop-down menu.

The extension of the initial functional model with a user profile and response-
time distributions gives us a combined model that is a stochastic timed automa-
ton (Sect. 2.3). Figure 4 illustrates this automaton for one incident object. Note,
we only show the combined model of one sub-state machine of the hierarchi-
cal EFSM in Fig. 3 for brevity. All locations (states) ! in this combined model
include a sojourn time that is defined with a probability density function f;.
The tasks of the functional model where separated into subtasks in order to
represent the response times of individual requests. Each subtask comprises an

® https://www.r-project.org

{TaskWeights: { Create: 70, Edit: 45, Close: 25, Select: 30 },
TaskWaitMin:500 , TaskWaitMax:1500, SubTaskWaitMin:300 ,SubTaskWaitMax:500 ,
WaitPerReference: 10, WaitPerCharacter: 30 }

Listing 1.1: User profile in the JavaScript Object Notation (JSON) format.



https://www.r-project.org

Statistical Model Checking of Response Times 9

70. StartTask m w1\ SetAttributel do

(1, 0) == rtime(...) W (i,0) J (a,b) = utime(...) \|18:8] J (u,0) :== rtime(...) \N (1, 0)
Create (a,b) := utime(...)
ds Commit Spr ’\tmhmez W2
[(n,0) )~ (p,0) == rtime(.. . = rtime(...) [a.b]
dc, w3 SetAttributel .
X N (11, 0) J(a, b) = utime(.. ) \|@: bl |~ (i, o) = rtime(...) l(?ommit
. el (1, 0) := rtime(....)
° A2 Edit
(14 25. StartTask Submitted Y " dr
) ) T, 0) := rtime(. ..) \[500,1500] Nk, o)
a,b) := utime(.
(Omm“Close (a,b) = utime(. ..
1 (1, 0) = rtime(.. Select
@ (T \30. 1ot (a0 N
N (u, ) w(u,u) = rtime(.. ) \NV (1, @) /(a,b) := utime(...) \ [@:b]

Fig. 4: Stochastic timed automata model for one incident object.

edge that calls the rtime function to receive the parameters (u, o) and a loca-
tion (d;) that applies these parameters in a normal distribution for f;. All other
locations describe f; with a uniform distribution given by an upper and lower
bound [a,b]. The locations Submitted and Closed have bounds from the user
input time intervals between tasks of the user profile and for the other locations
(w;) the bounds are calculated in a separate edge with a function utime (user
time). This function takes into account the user-time intervals between subtasks
and the data-dependent time, e.g., the wait per character, from the user profile,
and returns according bounds. The task weights of the user profile are attached
to the edge weights w, and they are shown before a edge name (in bold). It
can be seen that each transition or task of the initial functional model is now
represented as a sequence of edges with a silent edge at the end. Note, we also
included the select tasks, which were explained earlier. A create task is also pos-
sible in the submitted and closed location, but we omit additional edges for this,
in order to keep the figure simple. Note that we also omit parameters and their
assignments for the rtime and utime functions. The parameters for rtime were
already explained before and utime takes the generated attribute data as input
and returns associated intervals for the user-input time.

With this combined model, we can evaluate user profiles by simulating their
expected response times. Furthermore, we can analyse a user population con-
sisting of multiple users, by running several models concurrently. We execute
this model to answer questions, like “What is the probability that the response
time of each Commit subtask of a user within a population is under a certain
threshold?”. Such questions can be answered with a Monte Carlo simulation with
Chernoff-Hoeffding bound. For example, checking the probability for a response-
time threshold of one second for each user of a population of 10 users with pa-
rameters € = 0.05 and § = 0.01, requires 1060 samples and returns a probability
of 0.593, when a test-case length of three tasks is considered. Fortunately, the
SPRT requires fewer samples and is, therefore, better suited for the evaluation
of the reference SUT or SUT deployments.
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Hypothesis Testing with the SPRT. The probability that was computed on the
model with a Monte Carlo simulation serves as a hypothesis in order to check, if
SUT deployments are at least as good as the reference SUT. However, first we
evaluate the hypothesis on the reference SUT. We apply the computed probabil-
ity as alternative hypothesis and select a probability of 0.493 as null hypothesis,
which is 0.1 smaller, because we want to be able to reject the hypothesis that the
SUT has a smaller probability. By running the SPRT (with 0.01 as type I and II
error parameters) for each user of the population, we can check these hypothe-
ses. The alternative hypothesis was accepted for all users and on average 76.8
samples were needed for the decision. After we have evaluated the hypotheses on
the reference SUT, we can reuse the hypotheses to check if deployments of this
SUT provide a similar performance. For example, an evaluation of a deployment
with less RAM might result in the acceptance of the same hypotheses. The ac-
ceptance of the same hypotheses means that the deployment provides the same
or a similar performance as the reference SUT for our usage scenario, otherwise
the deployment has worse response times.

Note that our method was implemented in the same way, as described in
our previous work [37], by introducing custom generators for the response- and
user-input time. For brevity, we omit the details of the implementation.

4 Evaluation

System-Under-Test. We evaluated our method by applying it to a web-service
application from the automotive domain, which was provided by our industrial
partner AVLS. The application is called Testfactory Management Suite (TFMS)
and it enables various management activities of test beds, like test definition,
planning, preparation, execution and data management/analysis for testing en-
gines. TFMS is based on a client/server architecture. The server is connected
to an external MongoDB database. Client and server communicate via (SOAP)
web services hosted on a Microsoft Internet Information Server (IIS). There are
several client types that support different activities, e.g., one client for manag-
ing test orders for test beds. As part of the software quality verification process,
there is a test framework that simulates a client. This framework facilitates the
creation of requests to the server, and hence, supports our testing method which
works from a client’s perspective [4].

TFMS consists of several modules which group together objects of the appli-
cation domain and associated activities. For our evaluation, we focused on one
main module, the Test Order Manager. This module enables the configuration
and execution of test orders, which are basically a composition of steps that
are necessary for a test sequence at an automotive test bed. Figure 5 shows an
example sub-state machine for the tasks of one test order object. The complete
model of the Test Order Manager is also a hierarchical state machine, like Fig. 3,
but it is even more complex and therefore not presentable. Each task of the state

5 https://www.avl.com
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Fig. 5: Example sub-state machine of one test order object.

machine represents the invocation of a page, entering data for form fields and
saving the page, e.g., the page of one task is shown in Fig. 6. The Test Order
Manager contains further sub-state machines for the creation of test orders, like
Business Process Templates, but they are similar to this state machine, and are
therefore omitted [2].

Test Setup. We evaluated a TFMS server (version 1.8) that was running on
a virtual machine with Windows Server 2012. Note that the example given in
Sect. 3, was done with TFMS 1.7. Our reference SUT (Dy) had 15 GB of RAM
and 7 Intel Xeon E5-2690v4 2.6 GHz CPUs. A similar virtual machine with
6 GB RAM and 3 CPUs was used to run the test clients. We defined a set
of deployments by varying values for the CPUs, the RAM size, the network
bandwidth, and the network delay. These deployments (D;) are shown in Table 2.

General
Name: i E ol Folder: =
Business Process Template: I E Test Order Template: i '&
Work Shift: I E Priority: ‘hlgh |
Person in Charge: 1 E Accounting Number: ‘ |
Flequester S Deadine: [01.08.2003 00:00 |
Cost Center cc2 = Earlisst Start [12.04.2018 D0:00 |
Scheduling Mode: [Test Step Classic | Lateststan: [29.07.2013 11:00 |
Description; Created via page objects -~
-

Units Under Test ?E x E: 5

ImportUutéssembly...  Base Type Yariant Type Unit Under Test ShowUutdszemblyT ...
E quipment
Palt Tope Ay P IE
Pallet Configuration: I Scheduled Pallst: l:l w1
Pallet Wiring: I Pallet Assembly Template:

Pallet Assembly Template: | Show/Edit |

Fig. 6: Screen shot of a Test Order Manager web form for one task.
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Table 2: Different system deployments with various hardware/network settings.

Deplyoment Hardware Network
#CPUs|RAM [GB]|Bandwidth [Mbps]|Delay [ms]
Do 7 15 1000 0
Dy 7 4 1000 0
Do 2 15 1000 0
Ds 7 15 500 0
Dy 7 15 100 0
Ds 7 15 50 0
Dg 7 15 1000 25
D~ 7 15 1000 10

Since the server was running on a virtual machine, the hardware settings could
easily be changed. A tool called Network Emulator for Windows helped us to
configure the network setup of the test client, e.g., it allowed us to decrease
the network bandwidth. The testing phase and also the model evaluation were
performed with the PBT tool FsCheck 2.8.2.

Monte Carlo Simulation. We applied our method in order to answer the following
question: “What is the probability that the response time of all requests within
a task sequence of a fixed length, i.e. a test case, is under a specific threshold for
each user within a population?”. For this evaluation, a user profile was created in
cooperation with domain experts from AVL. This profile was similar to the one
of Listing 1.1, and is hence, omitted. Also the stochastic timed automata model
was similar to that of Fig. 4, but more complex, since the Test Order Manager
comprises multiple sub-state machines for different object types. We also omit
this model for brevity. We applied the model in the same way as described in
Sect. 3, in order to evaluate user populations of different sizes, and we checked
various response-time thresholds with a fixed test-case size of four tasks.

The model was analysed with a Monte Carlo simulation with Chernoff-
Hoeffding bound with parameters ¢ = 0.05 and § = 0.01, which requires 1060
samples (per data point). Figure 7 shows the results. As expected, a decrease in
the probability of our given question can be observed, when the number of users
increases or the threshold decreases. Note that an advantage of the evaluation
of the model is that the model execution can be accelerated with a virtual time.
We apply a virtual time of 1/10 of the actual time, which speeds up the model
execution by a factor of ten (compared to the SUT).

1 ‘ ‘ | |—e— 5 Users
E 0.8} 1 |—=— 25 Users
Lg 0.6 - | | —e— 45 Users
2 0.4 N
7 0.2 N

U I I I I

I
20 40 60 80 100 120
threshold[ms]

Fig. 7: Test Order Manager Monte Carlo simulation results of the model.
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Table 3: Different SPRT's for various numbers of users and thresholds.

SPRT No.|#Users|Threshold [ms]| Ho | H;
1 5 50 0.478(0.729
2 25 50 0.400{0.650
3 45 50 0.201{0.451
4 5 100 0.746{0.996
5 25 100 0.744(0.994
6 45 100 0.738(0.988

Hypothesis Testing with the SPRT. Next, we applied the probabilities of the
Monte Carlo simulation as hypotheses (H;) for SPRTs of the different deploy-
ments. We selected six data points of Fig. 7 with interesting thresholds and
different user numbers in order to form the hypotheses shown in Table 3. We
evaluate all deployments as explained in Sect. 3 by applying the SPRT with the
same parameters. Figure 8 summarises the results in three groups: one for the
deployments (and SPRTSs), where all clients accepted Hy, one where there was
no clear consensus among the clients, and one where all clients accepted Hyp. It
can be seen that H; was accepted by most of the deployments, which means that
they provide a similar performance. For one deployment (Ds) only SPRT 14
were successful, SPRT 5-6 were inconclusive, i.e. 48 % of the clients accepted H;
for SPRT 5 and 44 % for SPRT 6. For two deployments, Hy was accepted, which
means that their response time was worse than that of the reference SUT. In
summary, it can be said that a change in the server hardware did not significantly
affect the performance, as H; was accepted for all deployments with a changed
hardware. Also, a change in the network bandwidth had only a weak influence
on the performance. A clear change in the performance was only observed for
deployments with a higher network delay.

Additionally, we evaluated the number of needed samples of the SPRTs. Note
that in order to obtain an average number of needed samples, we run the SPRT
concurrently for each user of the population and calculate the average of these
runs. Multiple independent SPRT runs would produce a better average, but the
computation time was too high. Figure 9 shows the average number of needed
samples for the SPRTs of different deployments. It can be seen that certain
SPRTs are quite easy to check, e.g., SPRT 3 only needs about 6-13 samples,
other SPRTs take more than twice as many samples. However, a maximum of

D D D
(S

PRT 1-4)| (SPRT 5-6)

H, accepted by all clients Inconclusive Hy accepted by all clients

Fig.8: SPRT results of the different deployments.
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Dg D~
’DIZISPRT 100SPRT 200SPRT 308SPRT 400SPRT 50 1SPRT 6 \

Fig.9: Average number of samples (test cases) for the SPRTSs of our deployments.

about 30 samples is still very low compared to the 1060 samples of the Monte
Carlo simulation. This low number of samples allows us to evaluate multiple
SUT deployments within a feasible time.

5 Conclusion

We have demonstrated that we can apply SMC with learned timed models in
order to answer questions about the expected response time of given usage sce-
narios, like “What is the probability that the response time of each user within
a population, is under a specific threshold?”. Moreover, we have illustrated that
we can verify the results of such evaluations with hypothesis testing on a real sys-
tem. Additionally, we checked deployments of an SUT by reusing the hypotheses
of a reference SUT.

A major benefit of our approach is that it enables an efficient performance
comparison of a reference system with system deployments for specific usage
scenarios. This is especially helpful, when customer recommendation for the
hardware or network settings are needed for a deployment that should satisfy
certain user expectations. Another advantage of our method is that it is realised
within a PBT tool, which increases the accessibility for testers from industry,
because the models and properties can be defined in a high-level programming
language. Hence, there is no need to learn new notations.

We have evaluated our method with an industrial case study of a web-service
application, and it showed promising results. We analysed various deployments of
an SUT with different hardware and network settings. This analysis showed that
deployments with different server hardware provide a comparable performance
as the reference system for our given usage scenarios. Only deployments with
higher network delays showed a significant performance loss.

In the future, we plan to combine our technique with different learning meth-
ods. Since a linear regression requires still a high manual effort, we aim to eval-
uate learning methods that support a higher degree of automation. Moreover,
an analysis of the applicability of our method for other performance indicators
than response times, e.g., for energy, has a great potential for future work.
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